Linguistic and Nonlinguistic Turn Direction Concepts

  • Alexander Klippel
  • Daniel R. Montello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4736)

Abstract

This paper discusses the conceptualization of turn directions along traveled routes. Foremost, we are interested in the influence that language has on the conceptualization of turn directions. Two experiments are presented that contrast the way people group turns into similarity classes when they expect to verbally label the turns, as compared to when they do not. We are particularly interested in the role that major axes such as the perpendicular left and right axis play—are they boundaries of sectors or central prototypes, or do they have two functions: boundary and prototype? Our results support a) findings that linguistic and nonlinguistic categorization differ and b) that prototypes in linguistic tasks serve additionally as boundaries in nonlinguistic tasks, i.e. they fulfill a double function. We conclude by discussing implications for cognitive models of learning environmental layouts and for route-instruction systems in different modalities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldenderfer, M.S., Blashfield, R.K.: Cluster analysis. Sage, Newbury Park, CA (1984)Google Scholar
  2. 2.
    Allen, G.L.: From knowledge to words to wayfinding: Issues in the production and comprehension of route directions. In: Frank, H.S.C. (ed.) Spatial information theory: A theoretical basis for GIS, pp. 363–372. Springer, Berlin (1997)CrossRefGoogle Scholar
  3. 3.
    Bloom, P., Peterson, M.A., Nadel, L., Garrett, M.F.: Language and space. The MIT Press, Cambridge (1996)Google Scholar
  4. 4.
    Boroditsky, L.: Does language shape thought? Mandarin and English speakers’ conceptions of time. Cognitive Psychology 43, 1–22 (2001)CrossRefGoogle Scholar
  5. 5.
    Byrne, R.W.: Memory for urban geography. Quarterly Journal of Experimental Psychology 31, 147–154 (1979)CrossRefGoogle Scholar
  6. 6.
    Carlson-Radvansky, L.A., Logan, G.: The influence of reference frame selection on spatial template construction. Journal of Memory and Language 37, 411–437 (1997)CrossRefGoogle Scholar
  7. 7.
    Cooke, N.J.: Knowledge elicitation. In: Durso, F.T. (ed.) Handbook of applied cognition, pp. 479–510. John Wiley & Sons, Chichester (1999)Google Scholar
  8. 8.
    Coventry, K.R., Garrod, S.: Saying, seeing, and acting: The psychological semantics of spatial prepositions. Psychology Press, Hove, UK (2004)Google Scholar
  9. 9.
    Crawford, L.E., Regier, T., Huttenlocher, J.: Linguistic and non-linguistic spatial categorization. Cognition 75, 209–235 (2000)CrossRefGoogle Scholar
  10. 10.
    Denis, M., Pazzaglia, F., Cornoldi, C., Bertolo, L.: Spatial discourse and navigation: An analysis of route directions in the city of Venice. Applied Cognitive Psychology 13, 145–174 (1999)CrossRefGoogle Scholar
  11. 11.
    Frank, A.U.: Qualitative spatial reasoning: Cardinal directions as an example. International Journal of Geographical Information Systems 10, 269–290 (1996)Google Scholar
  12. 12.
    Franklin, N., Henkel, L.A., Zangas, T.: Parsing surrounding space into regions. Memory & Cognition 23, 397–407 (1995)Google Scholar
  13. 13.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and methods of spatio-temporal reasoning in geographic space, pp. 162–178. Springer, Berlin (1992)Google Scholar
  14. 14.
    Gennari, S.P., Sloman, S.A., Malt, B.C., Fitch, W.T.: Motion events in language and cognition. Cognition 83, 49–79 (2002)CrossRefGoogle Scholar
  15. 15.
    Golledge, R.G.: Primitives of spatial knowledge. In: Nyerges, T.L., Laurini, R., Egenhofer, M.J., Mark, D.M. (eds.) Cognitive aspects of human-computer interaction for geographic information systems, pp. 29–44. Kluwer, London (1995)Google Scholar
  16. 16.
    Gumperz, J., Levinson, S.: Rethinking linguistic relativity. Cambridge University Press, Cambridge (1996)Google Scholar
  17. 17.
    Habel, C., Herweg, M., Pribbenow, S.: Wissen über Raum und Zeit. In: Görtz, G. (ed.) Einführung in die künstliche Intelligenz, 2nd edn., pp. 129–185. Addison-Wesley, Bonn (1995)Google Scholar
  18. 18.
    Hayward, W.G., Tarr, M.J.: Spatial language and spatial representation. Cognition 55, 39–84 (1995)CrossRefGoogle Scholar
  19. 19.
    Hermer-Vazquez, L., Spelke, E.S., Katsnelson, A.S.: Sources of flexibility in human cognition: Dual-task studies of space and language. Cognitive Psychology 39, 3–36 (1999)CrossRefGoogle Scholar
  20. 20.
    Herskovits, A.: Language and spatial cognition: An interdisciplinary study of the prepositions in English. Cambridge University Press, Cambridge (1986)Google Scholar
  21. 21.
    Hintzman, D.L., O’Dell, C.S., Arndt, D.R.: Orientation in cognitive maps. Cognitive Psychology 13, 149–206 (1981)CrossRefGoogle Scholar
  22. 22.
    Huttenlocher, J., Hedges, L.V., Duncan, S.: Categories and particulars: Prototype effects in estimating spatial location. Psychological Review 98, 352–376 (1991)CrossRefGoogle Scholar
  23. 23.
    January, D., Kako, E.: Re-evaluating evidence for linguistic relativity: Reply to Boroditsky, Cognition, 2001 (in press)Google Scholar
  24. 24.
    Klippel, A.: Wayfinding choremes. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) Spatial information theory: Foundations of geographic information science, pp. 320–334. Springer, Berlin (2003)Google Scholar
  25. 25.
    Klippel, A., Dewey, C., Knauff, M., Richter, K.-F., Montello, D.R., Freksa, C., Loeliger, E.A.: Direction concepts in wayfinding assistance. In: Baus, J., Kray, C., Porzel, R., eds.: Workshop on Artificial Intelligence in Mobile Systems (AIMS 2004). Saarbrücken: SFB 378 Memo vol. 84, pp. 1–8 (2004)Google Scholar
  26. 26.
    Klippel, A., Tenbrink, T., Montello, D.R.: The role of structure and function in the conceptualization of directions. To be published in van der Zee, E., Vulchanova, M., eds.: Motion encoding in language and space. Oxford University Press, Oxford (in press)Google Scholar
  27. 27.
    Knauff, M., Rauh, R., Renz, J.: A cognitive assessment of topological spatial relations: Results from an empirical investigation. In: Hirtle, S.C., Frank, A.U. (eds.) Spatial information theory: A theoretical basis for GIS, pp. 193–206. Springer, Berlin (1997)CrossRefGoogle Scholar
  28. 28.
    Kos, A.J., Psenicka, C.: Measuring cluster similarity across methods. Psychological Reports 86, 858–862 (2000)Google Scholar
  29. 29.
    Landau, B.: Axes and direction in spatial language and spatial cognition. In: van der Zee, E., Slack, J. (eds.) Representing direction in language and space, pp. 18–38. Oxford University Press, Oxford (2003)Google Scholar
  30. 30.
    Levelt, W.J.M.: Speaking: From intention to articulation. MIT Press, Cambridge, MA (1989)Google Scholar
  31. 31.
    Levinson, S.C.: Frames of reference and Molyneux’s question: Crosslinguistic evidence. In: Bloom, P., Peterson, M.A., Nadel, L., Garrett, M.F. (eds.) Language and space, pp. 109–169. The MIT Press, Cambridge, MA (1996)Google Scholar
  32. 32.
    Levinson, S.C., Kita, S., Haun, D.B.M., Rasch, B.H.: Returning the tables: Language affects spatial reasoning. Cognition 84, 155–188 (2002)CrossRefGoogle Scholar
  33. 33.
    Lovelace, K.L., Hegarty, M., Montello, D.R.: Elements of good route directions in familiar and unfamiliar environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 65–82. Springer, Heidelberg (1999)Google Scholar
  34. 34.
    Malt, B.C., Sloman, S.A., Gennari, S.P.: Speaking versus thinking about objects and actions. In: Gentner, D., Goldin-Meadow, S. (eds.) Language in mind, pp. 81–112. The MIT Press, Cambridge, MA (2003)Google Scholar
  35. 35.
    Mark, D.M., Comas, D., Egenhofer, M.J., Freundschuh, S.M., Gould, M.D., Nunes, J.: Evaluating and refining computational models of spatial relations through cross-linguistic human-subjects testing. In: Frank, A.U., Kuhn, W. (eds.) Spatial information theory: A theoretical basis for GIS, pp. 553–568. Springer, Berlin (1995)Google Scholar
  36. 36.
    Meilinger, T., Hölscher, C., Büchner, S.J., Brösamle, M.: How much information do you need? Schematic maps in wayfinding and self localisation. In: Barkowsky, T., Freksa, C., Knauff, M. (eds.) Spatial cognition V, Springer, Berlin (in press)Google Scholar
  37. 37.
    Moar, I., Bower, G.H.: Inconsistency in spatial knowledge. Memory & Cognition 11, 107–113 (1983)Google Scholar
  38. 38.
    Montello, D.R., Frank, A.U.: Modeling directional knowledge and reasoning in environmental space: Testing qualitative metrics. In: Portugali, J. (ed.) The construction of cognitive maps, pp. 321–344. Kluwer Academic, The Netherlands, Dordrecht (1996)CrossRefGoogle Scholar
  39. 39.
    Montello, D.R., Richardson, A.E., Hegarty, M., Provenza, M.: A comparison of methods for estimating directions in egocentric space. Perception 28, 981–1000 (1999)CrossRefGoogle Scholar
  40. 40.
    Moratz, R., Tenbrink, T.: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations. Spatial Cognition and Computation 6, 63–106 (2006)CrossRefGoogle Scholar
  41. 41.
    Munnich, E., Landau, B., Dosher, B.A.: Spatial language and spatial representation: A cross-linguistic comparison. Cognition 81, 171–207 (2001)CrossRefGoogle Scholar
  42. 42.
    Regier, T.: The human semantic potential: Spatial language and constraint connectionism. The MIT Press, Cambridge (1996)Google Scholar
  43. 43.
    Sadalla, E.K., Montello, D.R.: Remembering changes in direction. Environment and Behavior 21, 346–363 (1989)CrossRefGoogle Scholar
  44. 44.
    Sholl, M.J.: The relationship between sense of direction and mental geographic updating. Intelligence 12, 299–314 (1988)CrossRefGoogle Scholar
  45. 45.
    Tversky, A., Gati, I.: Studies of similarity. In: Lloyd, E., Rosch, B.B. (eds.) Cognition and categorization, pp. 79–98. Lawrence Erlbaum, Hillsdale, NJ (1978)Google Scholar
  46. 46.
    Tversky, B.: Distortions in memory for maps. Cognitive Psychology 13, 407–433 (1981)CrossRefGoogle Scholar
  47. 47.
    Tversky, B., Lee, P.U.: How space structures language. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge, pp. 157–175. Springer, Berlin (1998)Google Scholar
  48. 48.
    van der Zee, E., Eshuis, R.: Directions from shape: How spatial features determine reference axis categorization. In: van der Zee, E., Slack, J. (eds.) Representing direction in language and space, pp. 209–225. Oxford University, Oxford (2003)Google Scholar
  49. 49.
    Vorwerg, C.: Use of reference directions in spatial encoding. In: Freksa, C., Brauer, W., Habel, W.W., Wender, K.F. (eds.) Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning, pp. 321–347. Springer, Berlin (2003)Google Scholar
  50. 50.
    Vorwerg, C., Rickheit, G.: Typicality effects in the categorization of spatial relations. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge. LNCS (LNAI), vol. 1404, pp. 203–222. Springer, Berlin (1998)Google Scholar
  51. 51.
    Waller, D., Loomis, J.M., Haun, D.B.M.: Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bulletin & Review 11, 157–163 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alexander Klippel
    • 1
  • Daniel R. Montello
    • 2
  1. 1.GeoVISTA Center, Department of Geography, Pennsylvania State University, PAUSA
  2. 2.Department of Geography, University of California, Santa Barbara, CAUSA

Personalised recommendations