Three Sampling Methods for Visibility Measures of Landscape Perception

  • Gerd Weitkamp
  • Arnold Bregt
  • Ron van Lammeren
  • Agnes van den Berg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4736)


The character of a landscape can be seen as the outcome of people’s perception of their physical environment, which is important for spatial planning and decision making. Three modes of landscape perception are proposed: view from a viewpoint, view from a road, and view of an area. Three sampling methods to calculate visibility measures simulate these modes of perception. We compared the results of the three sampling methods for two study areas. The ROPE method provides information about subspaces. The road method enables the analysis of sequences. The grid point method calculates visibility measures at almost every location in space, providing detailed information about transitions and pattern change between original and new situations. The mean visibility values for the study areas reveal major differences between the sampling methods. Combining the results of the three methods is expected to be useful for describing all the facets of landscape perception.


Visible Area Landscape Element Visibility Measure Space Syntax Original Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buijs, A.E., Pedroli, B., Luginbühl, Y.: From hiking through farmland to farming in a leisure landscape: changing social perceptions of the European landscape. Landscape Ecology 21, 375–389 (2006)CrossRefGoogle Scholar
  2. 2.
    Nohl, W.: Sustainable landscape use and aesthetic perception - preliminary reflections on future landscape aesthetics. Landscape and Urban Planning 54, 223–237 (2001)CrossRefGoogle Scholar
  3. 3.
    Granö, J.G.: Pure Geography. The Johns Hopkins University Press, London (1997)Google Scholar
  4. 4.
    Higuchi, T.: The Visual and Spatial Structure of Landscapes. MIT Press, Cambridge (1983)Google Scholar
  5. 5.
    Kaplan, S., Kaplan, R., Wendt, J.S.: Rated preference and complexity for natural and urban visual material. Perception & Psychophysics 12, 354–356 (1972)Google Scholar
  6. 6.
    Tuan, Y.-F.: Topophilia: A study of Environmental Perception, Attitudes, and Values. Prentice-Hall, Englewood Cliffs, New Jersey (1974)Google Scholar
  7. 7.
    Zube, E.H.: Perceived land use patterns and landscape values. Landscape Ecology 1, 37–45 (1987)CrossRefGoogle Scholar
  8. 8.
    Berg, A.E.v.d.: Individual Differences in the Aesthetic Evaluation of Natural Landscapes. Psychologische, Pedagogische en Sociologische Wetenschappen, Vol. PhD. Rijksuniversiteit Groningen, Groningen (1999) Google Scholar
  9. 9.
    Brabyn, L.: Solutions for characterising natural landscapes in New Zealand using geographical information systems. Journal of Environmental Management 76, 23–34 (2005)CrossRefGoogle Scholar
  10. 10.
    Miller, D.R.: Spatial Modelling of the Visibility of Land Use Change. In: 4th International Conference on Integrating GIS and Environmental Modeling Banff, Alberta, Canada (2000)Google Scholar
  11. 11.
    Smardon, R.C., Palmer, J.F., Felleman, J.P.: Foundations for Visual Project Analysis. John Wiley & Sons, New York (1986)Google Scholar
  12. 12.
    Bishop, I.D.: Assessment of visual qualities, impacts, and behaviours, in the landscape, by using measures of visibility. Environment and Planning B: Planning and Design 30, 677–688 (2003)CrossRefGoogle Scholar
  13. 13.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin Compagny, Boston (1979)Google Scholar
  14. 14.
    Thiel, P.: A sequence-experience notation: for architectural and urban spaces. Town Planning Review 32, 33–52 (1961)Google Scholar
  15. 15.
    De Floriani, L., Magillo, P.: Algorithms for visibility computation on terrains: A survey. Environment and Planning B: Planning and Design 30, 709–728 (2003)CrossRefGoogle Scholar
  16. 16.
    Llobera, M.: Extending GIS–based visual analysis: the concept of visualscapes. International Journal of Geographical Information Science 17, 25–48 (2003)CrossRefGoogle Scholar
  17. 17.
    Tandy, C.R.: The isovist method of landscape survey. In: Murray, H.C., (ed.) Methods of Landscape Analysis. Landscape Research Group, London (1967)Google Scholar
  18. 18.
    Benedikt, M.L.: To take hold of space: isovists and isovists fields. Environment and Planning B: Planning and Design 6, 47–65 (1979)CrossRefGoogle Scholar
  19. 19.
    Dijkstra, H.: Het visuele landschap: onderzoek naar de visuele kwaliteit van landschappen. Landschap 8, 157–175 (1991)Google Scholar
  20. 20.
    Lynch, K.: Image of the city. MIT Press, Cambridge (1960)Google Scholar
  21. 21.
    Dalton, R.C., Bafna, S.: The syntactical image of the city: a reciprocal definition of spatial elements and spatial syntaxes. In: 4th International Space Syntax Symposium, London (2003)Google Scholar
  22. 22.
    Freundschuh, S.M., Egenhofer, M.J.: Human conceptions of spaces: implications for Geographic Information Systems. Transactions in GIS 2, 361–375 (1997)Google Scholar
  23. 23.
    Montello, D.R.: Scale and multiple psychologies of space. In: Frank, A.U., Campari, I. (eds.) Spatial Information Theory: a Theoretical Basis for GIS, pp. 312–321. Springer, Heidelberg (1993)Google Scholar
  24. 24.
    Ministerie van VROM: Nota ruimte. Ministerie van VROM, Den Haag (2004)Google Scholar
  25. 25.
    Kuipers, B.: Modeling spatial knowledge. Cognitive Science 2, 129–153 (1978)CrossRefGoogle Scholar
  26. 26.
    Palmer, J.F., Lankhorst, J.R.-K.: Evaluating visible spatial diversity in the landscape. Landscape and Urban Planning 43, 65–78 (1998)CrossRefGoogle Scholar
  27. 27.
    Simonds, J.O.: Landscape Architecture: a Manual of Site Planning and Design. McGraw-Hill, New York (1998)Google Scholar
  28. 28.
    Laan, H.V.D.: Architectonic Space: Fifteen Lessons on the Disposition of the Human Habitat. Brill Academic Publishers, Leiden (1983)Google Scholar
  29. 29.
    Lynch, K.: Site Planning. MIT Press, Cambridge (1984)Google Scholar
  30. 30.
    Van der Ham, R.J.I.M., Iding, J.A.M.E.: Landscape Typology System based on Visual Elements: Methodology and Application. [s.n.], Wageningen (1971)Google Scholar
  31. 31.
    Mücher, C.A., Kramer, H., Thunnissen, H.A.M., Clement, J.: Monitoren van kleine landschapselementen met IKONOS satellietbeelden. Alterra, Wageningen (2003)Google Scholar
  32. 32.
    Van Buren, J., Westerik, A., Olink, E.J.H.: Kwaliteit Top10vector: De geometrische kwaliteit van de Top10vector van de topografische dienst. Kadaster (2003)Google Scholar
  33. 33.
    Giles Jr., R.H., Trani, M.K.: Key elements of landscape pattern measures. Key elements of landscape pattern measures 23, 477 (1999)Google Scholar
  34. 34.
    Manderller, F., Wrbka, T.: Functional and structural landscape indicators: Upscaling and downscaling problems. Ecological Indicators 5, 267–272 (2005)CrossRefGoogle Scholar
  35. 35.
    Rana, S.: Isovist Analyst Extension. Centre for Advanced Spatial Analysis, London (2002)Google Scholar
  36. 36.
    Lynch, J.A., Gimblett, R.H.: Perceptual values in the cultural landscape: a spatial model for assessing and mapping perceived mystery in rural environments. Journal of Computers, Environment and Urban Systems 16, 453–471 (1992)CrossRefGoogle Scholar
  37. 37.
    Hanna, K.C., Haniva, K.C.: GIS for Landscape Architects ESRI, Inc. (1999)Google Scholar
  38. 38.
    Tversky, B., Morrison, J.B., Franklin, N., Bryant, D.J.: Three spaces of spatial cognition. Professional Geographer 51, 516–524 (1999)CrossRefGoogle Scholar
  39. 39.
    Rana, S.: Use of GIS for planning visual surveillance installations. ESRI Homeland Security GIS Summit ESRI, Denver, Colorado (2005)Google Scholar
  40. 40.
    Vroom, M.J.: The perception of dimensions of space and levels of infrastructure and its application in landscape planning. Landscape Planning 12, 337–352 (1986)CrossRefGoogle Scholar
  41. 41.
    O’Sullivan, D., Turner, A.: Visibility graphs and landscape visibility analysis. International Journal of Geographical Information Science 15, 221–237 (2001)CrossRefGoogle Scholar
  42. 42.
    Hillier, B.: Space is the Machine: A Configurational Theory of Architecture. Cambridge University Press, Cambridge (1996)Google Scholar
  43. 43.
    Hillier, B., Hanson, J.: The social logic of space. Cambridge University Press, London (1984)Google Scholar
  44. 44.
    Kaplan, R., Kaplan, S., Ryan, R.L.: With People in Mind: Design and Management of Everyday Nature. Island Press, Washington (1998)Google Scholar
  45. 45.
    Hendriks, K., Stobbelaar, D.J.: Landbouw in een leesbaar landschap: hoe gangbare en biologische landbouwbedrijven bijdragen aan landschapskwaliteit. Vol. PhD. Wageningen University, Wageningen, 268 (2003)Google Scholar
  46. 46.
    Jiang, B., Claramunt, C.: Integration of space syntax into GIS: new perspectives for urban morphology. Transactions in GIS 6, 295–309 (2002)CrossRefGoogle Scholar
  47. 47.
    Turner, A., Doxa, M., O’Sullivan, D., Penn, A.: From Isovists to visibility graphs: a methodology for the analysis of architectural space. Environment and Planning B: Planning and Design 28, 103–121 (2001)CrossRefGoogle Scholar
  48. 48.
    Arthur, L.M., Daniel, T.C., Boster, R.S.: Scenic assessment: an overview. Landscape Planning 4 (1977)Google Scholar
  49. 49.
    Bourassa, S.: Toward a theory of landscape aesthetics. Landscape and Urban Planning 15, 241–252 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gerd Weitkamp
    • 1
  • Arnold Bregt
    • 1
  • Ron van Lammeren
    • 1
  • Agnes van den Berg
    • 2
  1. 1.Wageningen UR, Centre for Geo-Information, PO Box 47, 6700 AA WageningenThe Netherlands
  2. 2.Wageningen UR, PO Box 47, 6700 AA WageningenThe Netherlands

Personalised recommendations