Understanding the Environment Through Wireless Sensor Networks

  • Salvatore Gaglio
  • Luca Gatani
  • Giuseppe Lo Re
  • Marco Ortolani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4733)


This paper presents a new cognitive architecture for extracting meaningful, high-level information from the environment, starting from the raw data collected by a Wireless Sensor Network. The proposed framework is capable of building rich internal representation of the sensed environment by means of intelligent data processing and correlation. Furthermore, our approach aims at integrating the connectionist, data-driven model with the symbolic one, that uses a high-level knowledge about the domain to drive the environment interpretation. To this aim, the framework exploits the notion of conceptual spaces, adopting a conceptual layer between the subsymbolic one, that processes sensory data, and the symbolic one, that describes the environment by means of a high level language; this intermediate layer plays the key role of anchoring the upper layer symbols. In order to highlight the characteristics of the proposed framework, we also describe a sample application, aiming at monitoring a forest through a Wireless Sensor Network, in order to timely detect the presence of fire.


Sensor Node Wireless Sensor Network Cluster Head Conceptual Space Cognitive Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communication Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Approach. Morgan Kaufmann, San Francisco (2004)Google Scholar
  3. 3.
    He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao, Q., Vicaire, P., Stankovic, J.A., Abdelzaher, T.F., Hui, J., Krogh, B.: Vigilnet: An integrated sensor network system for energy-efficient surveillance. ACM Trans. Sen. Netw. 2(1), 1–38 (2006)CrossRefGoogle Scholar
  4. 4.
    Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T., Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods. In: SenSys ’05. Proceedings of the 3rd international conference on Embedded networked sensor systems, pp. 51–63. ACM Press, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for artificial vision. Artificial Intelligence 89(1–2), 73–111 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chella, A., Frixione, M., Gaglio, S.: Understanding dynamic scenes. Artificial Intelligence 123(1–2), 89–132 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gärdenfors, P.: Conceptual Spaces. The Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Goel, S., Imielinski, T., Passarella, A.: Using buddies to live longer in a boring world. In: Proc. IEEE PerCom Workshop, Pisa, Italy, pp. 342–346. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  9. 9.
    Burges, C.J.: 1. In: Data mining and knowledge discovery handbook: A complete guide for practitioners and researchers, Kluwer Academic Publishers, Boston, MA (2005)Google Scholar
  10. 10.
    Friedman, J., Tukey, J.: A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)zbMATHCrossRefGoogle Scholar
  11. 11.
    Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61(3), 611 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  13. 13.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Meila, M., Shi, J.: Learning segmentation by random walks. Advances in Neural Information Processing Systems 13 (2001)Google Scholar
  15. 15.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)Google Scholar
  16. 16.
    Cauwenberghs, C., Poggio, T.: Incremental and decremental support vector machine learning. In: NIPS. proc. of the 14th Conf. on Advances in Neural Infomation Processing Systems, pp. 409–415 (2000)Google Scholar
  17. 17.
    Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS (LNAI), vol. 422. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  18. 18.
    Brachman, R., Schmoltze, J.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)CrossRefGoogle Scholar
  19. 19.
    Merrill, D.F., Alexander, M.E. (eds.): Glossary of Forest Fire Management Terms. Canadian Committee on Forest Fire Management. National Research Council Canada, Ottawa, Ontario, Canada (1987)Google Scholar
  20. 20.
    Wilson, J., Steingart, D., Romero, R., Reynolds, J., Mellers, E., Redfern, A., Lim, L., Watts, W., Patton, C., Baker, J., Wright, P.: Design of monocular head-mounted displays for increased indoor firefighting safety and efficiency. In: Proceedings of SPIE, vol. 5800, pp. 103–114. Helmet- and Head-Mounted Displays X: Technologies and Applications (May 2005)Google Scholar
  21. 21.
    Doolin, D.M., Sitar, N.: Wireless sensors for wildfire monitoring. In: Proceedings of the 2nd international conference on Mobile systems, applications, and services, San Diego, CA, USA (March 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Salvatore Gaglio
    • 1
  • Luca Gatani
    • 1
  • Giuseppe Lo Re
    • 1
  • Marco Ortolani
    • 1
  1. 1.Dept. of Computer Engineering, University of Palermo, Viale delle Scienze, I-90128, PalermoItaly

Personalised recommendations