Uses of Contextual Knowledge in Mobile Robots

  • D. Calisi
  • A. Farinelli
  • G. Grisetti
  • L. Iocchi
  • D. Nardi
  • S. Pellegrini
  • D. Tipaldi
  • V. A. Ziparo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4733)

Abstract

In this paper, we analyze work on mobile robotics with the goal of highlighting the uses of contextual knowledge aiming at a flexible and robust performance of the system. In particular, we analyze different robotic tasks, ranging from robot behavior to perception, and then propose to characterize “contextualization” as a design pattern. As a result, we argue that many different tasks indeed can exploit contextual information and, therefore, a single explicit representation of knowledge about context may lead to significant advantages both in the design and in the performance of mobile robots.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Beetz, M., Arbuckle, T., Bennewitz, M., Burgard, W., Cremers, A., Fox, D., Grosskreutz, H., Hahnel, D., Schulz, D.: Integrated plan-based control of autonomous service robots in human environments (2001)Google Scholar
  3. 3.
    Brown, F.M., Agah, A., Gauch, J.M., Schreiber, T., Speer, S.R.: Ambiguity Resolution in Natural Language Understanding, Active Vision, Memory Retrieval, and Robot Reasoning and Actuation. In: SMC 1999. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, October 1999, IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  4. 4.
    Calisi, D., Farinelli, A., Iocchi, L., Nardi, D., Pucci, F.: Multi-objective autonomous exploration in a rescue environment. In: SSRR. Proceedings of IEEE International Workshop on Safety, Security and Rescue Robotics, Gaithersburg, MD, USA (2006)Google Scholar
  5. 5.
    Cesta, A., Cortellessa, G., Giuliani, M.V., Iocchi, L., Leone, R.G., Nardi, D., Pecora, F., Rasconi, R., Scopelliti, M., Tiberio, L.: The robocare assistive home robot. Autonomous Robots (to appear, 2007)Google Scholar
  6. 6.
    Coste-Manière, È., Simmons, R.G.: Architecture, the backbone of robotic systems. In: ICRA. Proc. of the IEEE Int. Conf. on Robotics & Automation, San Francisco, CA, USA, pp. 67–72. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  7. 7.
    Diosi, A., Taylor, G., Kleeman, L.: Interactive slam using laser and advanced sonar. In: ICRA. Proc. of the IEEE Int. Conf. on Robotics & Automation, Barcelona, Spain, pp. 1103–1108. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  8. 8.
    Dornhege, C., Kleiner, A.: Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. Technical Report 233, University of Freiburg (2007)Google Scholar
  9. 9.
    Firby, R.J.: Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Yale (1989)Google Scholar
  10. 10.
    Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernández-Madrigal, J.A., González, J.: Multi-hierarchical semantic maps for mobile robotics. In: IROS. Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Edmonton, CA, pp. 3492–3497 (2005), Online at http://www.aass.oru.se/~asaffio/
  11. 11.
    Gat, E.: Esl: A language for supporting robust plan execution in embedded autonomous agents. In: Proceedings of the IEEE Aerospace Conference, IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  12. 12.
    Georgeff, M.P., Lansky, A.L.: Procedural knowledge. Proceedings of the IEEE Special Issue on Knowledge Representation 74, 1383–1398 (1986)Google Scholar
  13. 13.
    Grisetti, G., Tipaldi, G.D., Stachniss, C., Burgard, W., Nardi, D.: Speeding up rao blackwellized slam. In: ICRA. Proc. of the IEEE Int. Conf. on Robotics & Automation, Orlando, FL, USA, pp. 442–447. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  14. 14.
    ICRA 2007 Workshop on Semantic Information in Robotics (ICRA-SIR 2007), Rome, Italy (April 2007)Google Scholar
  15. 15.
    Iocchi, L., Nardi, D., Marchetti, L., Ziparo, V.A.: S.P.Q.R. Legged Team Description Paper (2006)Google Scholar
  16. 16.
    Coelho, Jr., J.A., Araujo, E., Huber, M., Grupen, R.: Contextual control policy selection (1998)Google Scholar
  17. 17.
    Kim, D., Sun, J., Oh, S.M., Rehg, J.M, Bobick, A.: Traversability classification using unsupervised on-line visual learning for outdoor robot navigation. In: ICRA. Proc. of the IEEE Int. Conf. on Robotics & Automation, Orlando, FL, USA, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  18. 18.
    Kruijff, G.-J.M., Zender, H., Jensfelt, P., Christensen, H.I.: Clarification dialogues in human-augmented mapping. In: Geert-Jan, M. (ed.) HRI 2006. Proc. of the 1st Annual Conference on Human-Robot Interaction, Salt Lake City, UT (March 2006)Google Scholar
  19. 19.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  20. 20.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006), Also available at http://msl.cs.uiuc.edu/planning/
  21. 21.
    Lindemann, S.R., LaValle, S.M.: Current issues in sampling-based motion planning. In: Proceedings of the International Symposium of Robotics Research (2003)Google Scholar
  22. 22.
    Lombardi, P., Zavidovique, B., Talbert, M.: On the importance of being contextual. Computer 39(12), 57–61 (2006)CrossRefGoogle Scholar
  23. 23.
    Martínez Mozos, O., Burgard, W.: Supervised learning of topological maps using semantic information extracted from range data. In: IROS. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2772–2777 (2006)Google Scholar
  24. 24.
    McCarthy, J., Buvač,: Formalizing context (expanded notes). In: Buvač, S., Iwańska (eds.) Working Papers of the AAAI Fall Symposium on Context in Knowledge Representation and Natural Language, Menlo Park, California, pp. 99–135. American Association for Artificial Intelligence (1997)Google Scholar
  25. 25.
    Morency, L.-P., Sidner, C., Lee, C., Darrell, T.: Contextual recognition of head gestures. In: ICMI 2005: Proceedings of the 7th international conference on Multimodal interfaces, pp. 18–24. ACM Press, New York (2005)CrossRefGoogle Scholar
  26. 26.
    Newman, P., Cole, D., Ho, K.: Outdoor slam using visual appearance and laser ranging. In: ICRA. Proc. of the IEEE Int. Conf. on Robotics & Automation, Orlando, FL, USA, pp. 1180–1187. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  27. 27.
    Pellegrini, S., Iocchi, L.: Human posture tracking and classification through stereo vision. In: VISAPP. Proc. of Int. Conf. on Computer Vision Theory and Applications, pp. 261–269 (2006)Google Scholar
  28. 28.
    Triebel, R., Pfaff, P., Burgard, W.: Multi-level surface maps for outdoor terrain mapping and loop closing. In: IROS. Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China (2006)Google Scholar
  29. 29.
    Simmons, R., Apfelbaum, D.: A task description language for robot control. In: Proceedings Conference on Intelligent Robotics and Systems (October 1998)Google Scholar
  30. 30.
    Stachniss, C., Martínez-Mozos, O., Burgard, W.: Speeding-up multi-robot exploration by considering semantic place information. In: ICRA. Proc. of the IEEE Int. Conf. on Robotics & Automation, Orlando, FL, USA, pp. 1692–1697. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  31. 31.
    Turner, M.R.: Context-mediated behavior for intelligent agents. International Journal of Human-Computer Studies 48(3), 307–330 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • D. Calisi
    • 1
  • A. Farinelli
    • 1
  • G. Grisetti
    • 1
  • L. Iocchi
    • 1
  • D. Nardi
    • 1
  • S. Pellegrini
    • 1
  • D. Tipaldi
    • 1
  • V. A. Ziparo
    • 1
  1. 1.Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma 

Personalised recommendations