Advertisement

Harvesting Relational and Structured Knowledge for Ontology Building in the WPro Architecture

  • Daniele Bagni
  • Marco Cappella
  • Maria Teresa Pazienza
  • Marco Pennacchiotti
  • Armando Stellato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4733)

Abstract

We present two algorithms for supporting semi-automatic ontology building, integrated in WPro, a new architecturefor ontology learning from Web documents. The first algorithm automatically extracts ontological entities from tables, by using specific heuristics and WordNet-based analysis. The second algorithm harvests semantic relations from unstructured texts using Natural Language Processing techniques. The integration in WPro allows a friendly interaction with the user for validating and modifying the extracted knowledge, and for uploading it into an existing ontology. Both algorithms show promising performance in the extraction process, and offer a practical means to speed-up the overall ontology building process.

Keywords

Semantic Relation Internal Cell Column Header Unstructured Text Table Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basili, R., Zanzotto, F.M.: Parsing engineering and empirical robustness. Natural Language Engineering 8/2-3, 1245–1262 (2002)Google Scholar
  2. 2.
    Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings of ACL-1999, College Park, MD, pp. 57–64 (1999)Google Scholar
  3. 3.
    Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from texts: methods, evaluation and applications. IOS Press, Amsterdam (2005)Google Scholar
  4. 4.
    Caraballo, S.: Automatic acquisition of a hypernym labeled noun hierarchy from text. In: Proceedings of ACL 1999, Baltimore, MD, pp. 120–126 (1999)Google Scholar
  5. 5.
    Etzioni, O., Cagarella, M.J., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named entity extraction from the web: An experimental study. Artificial Intelligence 165(1), 91–143 (2002)CrossRefGoogle Scholar
  6. 6.
    Christiane, F. (ed.): WordNet: Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  7. 7.
    Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, J.H., Tu, S.W., Musen, M.A.: Knowledge Modeling at the Millennium (1999)Google Scholar
  8. 8.
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of COLING 1992, Nantes, France, pp. 539–545 (1992)Google Scholar
  9. 9.
    Hurst, M.: Layout and language: Beyond simple text for information interaction-modelling the table. In: Proceedings of the 2nd ICMI, Hong Kong (1999)Google Scholar
  10. 10.
    Jüling, W., Maurer, A.: Karlsruher Integriertes InformationsManagement. In: PIK 28 (2005)Google Scholar
  11. 11.
    Maedche, Volz: The Text-To-Onto Ontology Extraction and Maintenance Environment. In: Proceedings of the ICDM Workshop on integrating data mining and knowledge management, San Jose, California, USA (2001)Google Scholar
  12. 12.
    Pantel, P., Pennacchiotti, M.: Espresso: A Bootstrapping Algorithm for Automatically Harvesting Semantic Relations. In: Proceedings of COLING/ACL-06, Sydney, Australia (2006)Google Scholar
  13. 13.
    Pantel, P., Ravichandran, D.: Automatically labeling semantic classes. In: Proceedings of HLT/NAACL-04, Boston, MA, pp. 321–328 (2004)Google Scholar
  14. 14.
    Pivk, A., Cimiano, P., Sure, Y., Gams, M., Rajkovič, V., Studer, R.: Transforming arbitrary tables into logical form with TARTAR. Data & Knowledge Engineering 60, 3 (2007)CrossRefGoogle Scholar
  15. 15.
    Ravichandran, D., Hovy, E.H.: Learning surface text patterns for a question answering system. In: Proceedings of ACL-2002, Philadelphia, PA, pp. 41–47 (2002)Google Scholar
  16. 16.
    Tiberino, A.J., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Towards Ontology Generation from Tables. World Wide Web: Internet and Web Information Systems 8, 261–285 (2005)CrossRefGoogle Scholar
  17. 17.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Daniele Bagni
    • 1
  • Marco Cappella
    • 1
  • Maria Teresa Pazienza
    • 1
  • Marco Pennacchiotti
    • 2
  • Armando Stellato
    • 1
  1. 1.DISP, University of Rome “Tor Vergata”Italy
  2. 2.Computational Linguistics, Saarland UniversityGermany

Personalised recommendations