Advertisement

Exploring Toe Walking in a Bipedal Robot

  • James Andrew Smith
  • Andre Seyfarth
Part of the Informatik aktuell book series (INFORMAT)

Abstract

The design and development of locomotory subsystems such as legs is a key issue in the broader topic of autonomous mobile systems. Simplification of substructures, sensing, actuation and control can aid to better understand the dynamics of legged locomotion and will make the implementation of legs in engineered systems more effective. This paper examines recent results in the development of toe walking on the JenaWalker II robot. The robot is shown, while supported on a treadmill, to be capable of accelerating from 0 to over 0.6 m/s without adjustment of control parameters such as hip actuator sweep frequency or amplitude. The resulting stable motion is due to the adaptability of the passive structures incorporated into the legs. The roles of the individual muscletendon groups are examined and a potential configuration for future heel-toe trials is suggested.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Neville, M. Buehler, and I. Sharf. A bipedal running robot with one actuator per leg. In IEEE Int. Conf. Robotics and Automation, Orlando, USA, May 2006.Google Scholar
  2. 2.
    F. Iida, Y. Minekawa, J. Rummel, and A. Seyfarth. Intelligent Autonomous Systems, chapter Toward a Human-Like Biped Robot with Compliant Legs, pages 820–827. Number 9. IOS Press, 2006.Google Scholar
  3. 3.
    R. McNeill Alexander. Three uses for springs in legged locomotion. International Journal of Robotics Research, 9(2), 1990.Google Scholar
  4. 4.
    T. A. McMahon. Muscles, reflexes, and locomotion. Princeton University Press, Princeton, N.J., USA, 1984.Google Scholar
  5. 5.
    M. Raibert. Legged Robots That Balance. The MIT Press, Cambridge, USA, 1986.Google Scholar
  6. 6.
    T. McGeer. Passive bipedal running. Technical report, Simon Fraser University, Centre For Systems Science, Burnaby, B.C., Canada, 1989.Google Scholar
  7. 7.
    R. Blickhan. The spring-mass model for running and hopping. J. Biomech., 22: 1217–1227, 1989.CrossRefGoogle Scholar
  8. 8.
    H. Geyer, A. Seyfarth, and R. Blickhan. Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. B, 273(1603): 2861–2867, 2006.CrossRefGoogle Scholar
  9. 9.
    S. Lipfert and A. Seyfarth. Elastic legs in human walking. J. Biomech., 40(S2): S385, 2007.CrossRefGoogle Scholar
  10. 10.
    J. Perry, J. M. Burnfield, J. K. Gronley, and Mulroy S. J. Toe walking: muscular demands at the ankle and knee. Arch Phys Med Rehabil, 84(1): 7–16, Jan. 2003.Google Scholar
  11. 11.
    E. P. Schwentker. Toe walking. Online publication, eMedicine.com, July2004.
  12. 12.
    M. Ishikawa, P. V. Komi, M. J. Grey, V. Lepola, and G.-P. Bruggemann. Muscletendon interaction and elastic energy usage in human walking. J. Appl. Physiol, 99: 603–608, 2005.CrossRefGoogle Scholar
  13. 13.
    C. Jaeger. Einfluss der Fusshaltung und Laufgeschwindigkeit auf die Biomechanik des Gehens. Diploma thesis, FSU-Jena, Jena, Germany, October 2006.Google Scholar
  14. 14.
    C. T. Farley. Determinants of the center of mass trajectory in human walking and running. The Journal of Experimental Biology, 201: 2935–2944, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • James Andrew Smith
    • 1
  • Andre Seyfarth
    • 1
  1. 1.Lauflabor, Institute for Sports ScienceFriedrich-Schiller UniversityJena

Personalised recommendations