Qos Provisioning in Mobile Networks Based on Aggregate Bandwidth Reservation

  • Kelvin L. Dias
  • Stenio F. L. Fernandes
  • Djamel F. H. Sadok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4742)


This paper proposes a novel resource management framework that integrates Call Admission Control (CAC) and aggregate reservation of bandwidth for mobile networks in a scalable fashion. Our proposal avoids per-user reservation signaling overhead and takes into account the expected bandwidth to be used by calls handed off from neighboring cells within a prediction interval through the Trigg and Leach Method (an adaptive exponential smoothing technique). Our scheme is compared through simulations with the ACR (Adaptive Channel Reservation) scheme, a dynamic reservation-based proposal that uses GPS systems to extrapolate users’ movement and to trigger reservations in the next predicted cell. The simulation results show that our proposal provides the best performance in terms of handoff dropping probability and can achieve similar levels of call blocking probability as compared to ACR. In addition, our proposal can grant an upper bound on handoff dropping probability even under very high loads.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braden, R., et al.: Integrated Services in the Internet Architecture: an Overview. IETF RFC 1633 (June 1994)Google Scholar
  2. 2.
    Blake, S., et al.: An architecture for Differentiated Services. IETF RFC 2475 (December 1998)Google Scholar
  3. 3.
    Nichols, K., et al.: A Two-bit Differentiated Services Architecture for Internet. RFC 2638 (July 1999)Google Scholar
  4. 4.
    Hong, D., Rappaport, S.: Traffic Model and Performance Analysis for Cellular Mobile Radio Telephone Systems with Prioritised and Nonprioritised Handoff Procedures IEEE Tran. Veh Tech. (August 1986)Google Scholar
  5. 5.
    Choi, S., Shin, K.G.: Predictive and Adaptive Bandwidth Reservation for Handoffs in QoS Sensitive Cellular Net-works. In: Proc. ACM SIGCOMM, ACM Press, New York (1998)Google Scholar
  6. 6.
    Naghshineh, M., Schwartz, M.: Distributed Call Admission Control in Mobile/Wireless Networks. IEEE JSAC 14(4), 711–717 (1996)Google Scholar
  7. 7.
    Zhang, T., et al.: Local Predictive Resource Reservation for Handoff in Multimedia Wireless IP Networks. IEEE Journal on Selected Areas in Communications 19(10) (October 2001)Google Scholar
  8. 8.
    Chiu, M.H., Bassiouni, M.A.: Predictive Schemes for Handoff Prioritization in Cellular Networks based on Mobile Positioning. IEEE JSAC 18(3) (March 2000)Google Scholar
  9. 9.
    Xu, Z., et al.: A New Adaptive Channel Reservation Scheme for Handoff Calls in Wireless Cellular Networks. In: Proceedings of IFIP Networking, pp. 672–684 (2002)Google Scholar
  10. 10.
    Soh, W.S., Kim, H.S.: Dynamic Bandwidth Reservation in Cellular Networks Using Road Topology Based Mobility Predictions. In: IEEE INFOCOM, Hong Kong (March 2004)Google Scholar
  11. 11.
    Soh, W.-S., Kim, H.S.: QoS Provisioning in Cellular Networks Based on Mobility Prediction Techniques. IEEE Comm. Mag., 86–92 (January 2003)Google Scholar
  12. 12.
    Trigg, D.W., Leach, D.H.: Exponential Smoothing with an Adaptive Response Rate. Operational Research Quarterly 18, 53–59 (1967)CrossRefGoogle Scholar
  13. 13.
    Diederich, J., Zitterbart, M.: A Simple and Scalable Handoff Prioritization Scheme. Elsevier Computer Communications 28, 773–789 (2005)Google Scholar
  14. 14.
    Rozic, N., Kandus, G.: MIMO ARIMA models for handoff resource reservation in multimedia wireless networks. Wiley Wireless Communications and Mobile Computing 4, 497–512 (2004)CrossRefGoogle Scholar
  15. 15.
    Dias, K.L., Fernandes, S.F.L., Sadok, D.F.H.: Predictive Call Admission Control for All-IP Wireless and Mobile Networks. In: IFIP/ACM Latin America Networking Conference, pp. 131–139. ACM Press, New York (2003)CrossRefGoogle Scholar
  16. 16.
    Ghaderi, M., Boutaba, R.: Call Admission Control in Mobile Cellular Networks: A Comprehensive Survey. Wiley Wireless Communications and Mobile Computing 6(1), 69–93 (2006)CrossRefGoogle Scholar
  17. 17.
    Taylor, J.W.: Smooth transition exponential smoothing. Journal of Forecasting 23(6), 385–404 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kelvin L. Dias
    • 1
  • Stenio F. L. Fernandes
    • 2
  • Djamel F. H. Sadok
    • 3
  1. 1.UFPA, Electrical and Computer Engineering, PO Box 8619, 66.075-900 - Belém, PABrazil
  2. 2.CEFET-AL, Informatics, Barão de Atalaia, S/N, 57.020-510, Maceió, ALBrazil
  3. 3.UFPE, Computer Science, PO Box 7851, Recife, PEBrazil

Personalised recommendations