Advertisement

Structural Transitions in Colloidal Suspensions

  • Martin Hecht
  • Jens Harting

Abstract

In suspensions of colloidal particles different types of interactions are in a subtle interplay. In this report we are interested in sub-micro meter sized Al2O3 particles which are suspended in water. Their interactions can be adjusted by tuning the pH-value and the salt concentration. In this manner different microscopic structures can be obtained. Industrial processes for the production of ceramics can be optimized by taking advantage of specific changes of the microscopic structure. To investigate the influences of the pH-value and the salt concentration on the microscopic structure and the properties of the suspension, we have developed a coupled Stochastic Rotation Dynamics (SRD) and Molecular Dynamics (MD) simulation code. The code has been parallelized using MPI. We utilize the pair correlation function and the structure factor to analyze the structure of the suspension. The results are summarized in a stability diagram. For selected conditions we study the process of cluster formation in large scale simulations of dilute suspensions.

Keywords

Ionic Strength Shear Rate Colloidal Particle Cluster Formation Colloidal Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Ackerson, C. G. DeKruif, N. J. Wagner, and W. B. Russel. Comparison of small shear flow rate-small wave vector static structure factor data with theory. J. Chem. Phys., 90(6):3250, 1989.CrossRefGoogle Scholar
  2. 2.
    B. J. Ackerson and P. N. Pusey. Shear-induced order in suspensions of hard spheres. Phys. Rev. Lett., 61(8):1033, 1988.CrossRefGoogle Scholar
  3. 3.
    S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, and D. Hone. Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory. J. Chem. Phys., 80(11):5776–81, 1984.CrossRefGoogle Scholar
  4. 4.
    I. Ali, D. Marenduzzo, and J. M. Yeomans. Dynamics of polymer packaging. J. Chem. Phys., 121:8635–8641, Nov. 2004.CrossRefGoogle Scholar
  5. 5.
    M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford Science Publications. Clarendon Press, Oxford, 1987.zbMATHGoogle Scholar
  6. 6.
    J. F. Brady. The rheological behavior of concentrated colloidal suspensions. J. Chem. Phys., 99(1):567–81, 1993.CrossRefGoogle Scholar
  7. 7.
    J. F. Brady and G. Bossis. Stokesian dynamics. Ann. Rev. Fluid Mech., 20:111–57, 1988.CrossRefGoogle Scholar
  8. 8.
    A. A. Catherall, J. R. Melrose, and R. C. Ball. Shear thickening and order–disorder effects in concentrated colloids at high shear rates. Journal of Rheology, 44(1):1–25, 2000.CrossRefGoogle Scholar
  9. 9.
    I. Cohen, T. G. Mason, and D. A. Weitz. Shear-induced configurations of confined colloidal suspensions. Phys. Rev. Lett., 93(4):046001, 2004.CrossRefGoogle Scholar
  10. 10.
    A. de Candia, E. del Gado, A. Fierro, N. Sator, and A. Coniglio. Colloidal gelation, percolation and structural arrest. Physica A, 358:239–248, 2005.CrossRefGoogle Scholar
  11. 11.
    B. V. Derjaguin and L. D. Landau. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phsicochimica USSR, 14:633, 1941.Google Scholar
  12. 12.
    J. Dobnikar, Y. Chen, R. Rzehak, and H. H. von Grünberg. Many-body interactions in colloidal suspensions. J. Phys.: Condens. Matter, 15:S263, 2003.CrossRefGoogle Scholar
  13. 13.
    J. Dobnikar, R. Rzehak, and H. H. von Grünberg. Effect of many-body interactions on the solid-liquid phase behavior of charge-stabilized colloidal suspensions. Europhys. Lett., 61(5):695–701, 2003.CrossRefGoogle Scholar
  14. 14.
    E. Falck, J. M. Lahtinen, I. Vattulainen, and T. Ala-Nissila. Influence of hydrodynamics on many-particle diffusion in 2d colloidal suspensions. Eur. Phys. J. E, 13:267–275, 2004.CrossRefGoogle Scholar
  15. 15.
    M. J. Grimson and M. Silbert. A self-consistent theory of the effective interactions in charge-stabilized colloidal dispersions. Macromol. Phys., 74(2):397–404, 1991.Google Scholar
  16. 16.
    L. Harnau and S. Dietrich. Depletion potential in colloidal mixtures of hard spheres and paltelets. Phys. Rev. E, 69:051501, 2004.CrossRefGoogle Scholar
  17. 17.
    M. Hecht, J. Harting, M. Bier, J. Reinshagen, and H. J. Herrmann. Shear viscosity of clay-like colloids in computer simulations and experiments. Phys. Rev. E, 74:021403, 2006.CrossRefGoogle Scholar
  18. 18.
    M. Hecht, J. Harting, and H. J. Herrmann. Formation and growth of clusters in colloidal suspensions. Int. J. Mod. Phys. C, 2007. in print.Google Scholar
  19. 19.
    M. Hecht, J. Harting, and H. J. Herrmann. A stability diagram for dense suspensions of model colloidal al2o3-particles in shear flow. arXiv:cond-mat/0606455, 2006. Accepted for publication in Phys. Rev. E.Google Scholar
  20. 20.
    M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann. Simulation of claylike colloids. Phys. Rev. E, 72:011408, jul 2005.CrossRefGoogle Scholar
  21. 21.
    M. Hütter. Brownian Dynamics Simulation of Stable and of Coagulating Colloids in Aqueous Suspension. PhD thesis, Swiss Federal Institute of Technology Zurich, 1999.Google Scholar
  22. 22.
    M. Hütter. Local structure evolution in particle network formation studied by brownian dynamics simulation. J. Colloid Interface Sci., 231:337–350, 2000.CrossRefGoogle Scholar
  23. 23.
    A.-P. Hynninen, M. Dijkstra, and R. van Roij. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions. Phys. Rev. E, 69:061407, 2004.CrossRefGoogle Scholar
  24. 24.
    T. Ihle and D. M. Kroll. Stochastic rotation dynamics I: Formalism, galilean invariance, green-kubo relations. Phys. Rev. E, 67(6):066705, 2003.CrossRefGoogle Scholar
  25. 25.
    T. Ihle and D. M. Kroll. Stochastic rotation dynamics II: Transport coefficients, numerics, long time tails. Phys. Rev. E, 67(6):066706, 2003.CrossRefGoogle Scholar
  26. 26.
    Y. Inoue, Y. Chen, and H. Ohashi. Development of a simulation model for solid objects suspended in a fluctuating fluid. J. Stat. Phys., 107(1):85–100, 2002.CrossRefGoogle Scholar
  27. 27.
    A. Komnik, J. Harting, and H. J. Herrmann. Transport phenomena and structuring in shear flow of suspensions near solid walls. Journal of Statistical Mechanics: theory and experiment, P12003, 2004.Google Scholar
  28. 28.
    A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation. J. Fluid Mech., 271:285–309, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 2. numerical results. J. Fluid Mech., 271:311–339, 1994.CrossRefMathSciNetGoogle Scholar
  30. 30.
    A. J. C. Ladd and R. Verberg. Lattice-boltzmann simulations of particle-fluid suspensions. J. Stat. Phys., 104(5):1191, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Lattuada, H. Wu, and M. Morbidelli. Estimation of fractal dimension of colloidal gels in the presence of multiple scattering. Phys. Rev. E, 64:061404, 2001.CrossRefGoogle Scholar
  32. 32.
    Y. Levin, T. Trizac, and L. Bocquet. On the fluid-fluid phase separation in charged-stabilized colloidal suspensions. J. Phys.: Condens. Matter, 15:S3523, 2003.CrossRefGoogle Scholar
  33. 33.
    A. Malevanets and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys., 110:8605, 1999.CrossRefGoogle Scholar
  34. 34.
    A. Malevanets and R. Kapral. Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys., 112:7260, 2000.CrossRefGoogle Scholar
  35. 35.
    D. W. McCarthy, J. E. Mark, and D. W. Schaefer. Synnthesis, structure, and properdies of hybrid organic-inorganic composites based on polysiloxanes. i. poly(dimathylsiloxane) elastomers containing silica. J. Polym. Sci. B, 36(7):1167, 1998.CrossRefGoogle Scholar
  36. 36.
    J. R. Melrose and D. M. Heyes. Simulations of electrorheological and particle mixture suspensions: Agglomerate and layer structures. J. Chem. Phys., 98(7):5873–5886, 1993.CrossRefGoogle Scholar
  37. 37.
    R. Oberacker, J. Reinshagen, H. von Both, and M. J. Hoffmann. Ceramic slurries with bimodal particle size distributions: Rheology, suspension structure and behaviour during pressure filtration. In N. C. S. Hirano, G.L. Messing, editor, Ceramic Processing Science VI, volume 112, pages 179–184. American Ceramic Society, Westerville, OH (USA), 2001. ISBN 1574981048.Google Scholar
  38. 38.
    J. T. Padding and A. A. Louis. Hydrodynamic and brownian fluctuations in sedimenting suspensions. Phys. Rev. Lett., 93:220601, 2004.CrossRefGoogle Scholar
  39. 39.
    J. T. Padding and A. A. Louis. Hydrodynamic interactions and brownian forces in colloidal suspensions: Coarse-graining over time and length-scales. Phys. Rev. E, 74:031402, 2006.CrossRefGoogle Scholar
  40. 40.
    T. Palberg, W. Mönch, F. Bitzer, R. Piazza, and T. Bellini. Freezing transition for colloids with adjustable charge: A test of charge renormalization. Phys. Rev. Lett., 74:4555, 1995.CrossRefGoogle Scholar
  41. 41.
    T. N. Phung, J. F. Brady, and G. Bossis. Stokesian dynamics simulation of brownian suspensions. J. Fluid Mech., 313:181–207, 1996.CrossRefGoogle Scholar
  42. 42.
    M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper. Low-reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhys. Lett., 68:106–12, 2004.CrossRefGoogle Scholar
  43. 43.
    M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper. Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Phys. Rev. E, 72:016701, 2005.CrossRefGoogle Scholar
  44. 44.
    M. Ripoll, R. G. Winkler, and G. Gompper. Star polymers in shear flow. Phys. Rev. Lett., 96:188302, 2006.CrossRefGoogle Scholar
  45. 45.
    A. Sierou and J. F. Brady. Accelerated stokesian dynamics simulations. J. Fluid Mech., 448:115, 2001.zbMATHCrossRefGoogle Scholar
  46. 46.
    A. Sierou and J. F. Brady. Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech., 506:285, 2004.Google Scholar
  47. 47.
    L. E. Silbert, J. R. Melrose, and R. C. Ball. Colloidal microdynamics: Pair-drag simulations of model-concentrated aggregated systems. Phys. Rev. E, 56(6):7067–7077, December 1997.CrossRefGoogle Scholar
  48. 48.
    K. G. Soga, J. R. Melrose, and R. C. Ball. Continuum percolation and depletion flocculation. J. Chem. Phys., 108(14):6026–6032, 1998.CrossRefGoogle Scholar
  49. 49.
    K. G. Soga, J. R. Melrose, and R. C. Ball. Metastable states and the kinetics of colloid phase separation. J. Chem. Phys., 110(4):2280–2288, 1999.CrossRefGoogle Scholar
  50. 50.
    V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, and D. A. Weitz. Jamming phase diagram for attractive particles. Nature, 411(3):772–774, 2001.CrossRefGoogle Scholar
  51. 51.
    R. van Roij and J.-P. Hansen. Van der waals-like instability in suspensions of mutually repelling charged colloids. Phys. Rev. Lett., 79(16):3082–85, 1997.CrossRefGoogle Scholar
  52. 52.
    E. J. W. Vervey and J. T. G. Overbeek. Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam, 1948.Google Scholar
  53. 53.
    R. G. Winkler, K. Mussawisade, M. Ripoll, and G. Gompper. Rod-like colloids and polymers in shear flow: a multi-particle-collision dynamics study. J. Phys.: Condens. Matter, 16(38):S3941–54, 2004.CrossRefGoogle Scholar
  54. 54.
    R. Yamamoto, K. Kim, Y. Nakayama, K. Miyazaki, and D. R. Reichman. On the role of hydrodynamic interactions in colloidal gelation. arXiv:cond-mat/0604404, 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Hecht
    • 1
  • Jens Harting
    • 1
  1. 1.Institut für ComputerphysikStuttgartGermany

Personalised recommendations