Large Eddy Simulation (LES) with Moving Meshes on a Rapid Compression Machine: Part 2: Numerical Investigations Using Euler–Lagrange-Technique

  • Franco Magagnato
  • Martin Gabi
  • Thomas Heidenreich
  • Amin Velji
  • Ulrich Spicher


The flow inside a simplified one-stroke engine with squared cross section has been calculated with compressible Large Eddy Simulation (LES) using our code SPARC and compared with the measurements on the same geometry. The one-stroke engine has a turbulence generator, which can ether generate a tumble or homogenous turbulence depending on the configuration. By waiting different amount of time after the turbulence generation process a variable turbulence level can be achieved. During the up going motion of the piston the turbulent fuel mixture is compressed and ignited by a row of spark plugs. The simulation has been using more then 8 million points for the space discretization. A space conservation law was used to calculate the grid motion with Euler-Lagrange technique. The mesh was refined in the shear layers and close to the wall so that y+ < 1 results almost everywhere. A comparison between Miles (monotonically integrated large eddy simulation) approach and conventional subgrid scale modelling (dynamic Smagorinsky) showed very similar solutions. Mean and fluctuating velocities at TDC are compared with available experimental findings.


Large Eddy Simulation Compression Phase Turbulence Generator Compression Stroke Subgrid Scale Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haworth, D.C.: Large-Eddy-Simulation of In-Cylinder Flows. Oil & Gas Science and Technology-Rev. IFP, 54 (2), pp. 175–185 (1999)CrossRefGoogle Scholar
  2. 2.
    Moreau, V., Lartique, G., Sommerer, Y., Angelberger, C., Colin, O., Poinsot, T.: Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. Journal of Computational Physics , 202, pp. 710–736 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Jhavar, R., Rutland, C.: Using Large Eddy Simulation to Study Mixing Effects in Early Injection Diesel Engine Combustion. SAE Paper, 2006-01-0871Google Scholar
  4. 4.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. 2nd ed., Edwards, ISBN: 1-930217-10-2 (2005)Google Scholar
  5. 5.
    Germano, M.: The Filtering Approach. Journal of Fluid Mechanics, 238, pp. 325–336 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boris, J.P., Grinstein, F.E., Oran, E.S., Kolbe, R.L.: New insights into large-eddy simulation. Fluid Dyn. Res. 10, pp. 199–228 (1992)Google Scholar
  7. 7.
    Magagnato, F., Pritz, B., Gabi, M.: Calculation of a Turbine Blade at high Reynolds number by LES. Proceedings of the 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii (2006)Google Scholar
  8. 8.
    Magagnato, F., Pritz, B., Büchner, H., Gabi, M.: Prediction of the Resonance Characteristic of Combustion Chambers on the Basis of Large-Eddy-Simulation. Journal of Thermal Sciences, 14 (2), pp. 156–161 (2005)CrossRefGoogle Scholar
  9. 9.
    Magagnato, F.: KAPPA - Karlsruhe Parallel Program for Aerodynamics. TASK Quarterly 2 (2), pp. 215–270 (1998)Google Scholar
  10. 10.
    Lai, Y.G., Przekwas, A.J.: A Finite-Volume Method for fluid flow Simulations with Moving Boundaries. Comp. Fluid Dynamics, 2, pp. 19–40 (1994)CrossRefGoogle Scholar
  11. 11.
    Franke, J.: Untersuchung zur Grobstruktur-simulation kompressibler Strömungen mit der Volumenfiltermethode auf bewegten Gittern. Dissertation, University of Karlsruhe (1998)Google Scholar
  12. 12.
    Merkel, S., Hunzinger, M., Nauwerck, A., Hensel, S., Velji, A., Spicher, U.: Einfluss der Turbulenz, des Luftverhältnisses und der Wandtemperatur auf die Flammenausbreitung unter ottomotorischen Bedingungen. VII. Tagung "Motorische Verbrennung" München, (2005)Google Scholar
  13. 13.
    Swanson, R.C., Turkel, E.: Computational fluid dynamics: Multistage central difference schemes for the Euler and Navies-Stokes equations. Lecture Notes of von Karman Institute for Fluid Dynamics (1996)Google Scholar
  14. 14.
    Hunzinger, M.: Private Communication. (2006)Google Scholar
  15. 15.
    Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA Journal, 33 (2), pp. 2050–2057 (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Franco Magagnato
    • 1
  • Martin Gabi
    • 1
  • Thomas Heidenreich
    • 2
  • Amin Velji
    • 2
  • Ulrich Spicher
    • 2
  1. 1.Institute of Fluid MachineryUniversity of KarlsruheKarlsruheGermany
  2. 2.Institute of Reciprocating EnginesUniversity of KarlsruheKarlsruheGermany

Personalised recommendations