Advertisement

Investigation of the Turbulent Flow Separation from an Axisymmetric Hill

  • Manuel García-Villalba
  • Wolfgang Rodi

Abstract

A highly-resolved Large Eddy Simulation of high Reynolds number flow over and around a three-dimensional hill is currently being performed on the NEC SX-8. The principal aim of the study is to generate target results against which Hybrid LES-RANS methods can be validated. The complex flow separation in the lee of the hill is illustrated by displaying streamlines of the mean flow at different heights. The instantaneous structures which appear in the wake of the hill are also discussed.

Keywords

Turbulent Kinetic Energy Large Eddy Simulation Direct Numerical Simulation Reynolds Average Navier Stokes Reynolds Average Navier Stokes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.L. Simpson, C.H. Long, and G. Byun. Study of vortical separation from an axisymmetric hill. Int. J. Heat Fluid Flow, 23:582–591, 2002.CrossRefGoogle Scholar
  2. 2.
    R. Ma and R.L. Simpson. Characterization of turbulent flow downstream of a three-dimensional axisymmetric bump. In Proc. 4th Int. Symposium on Turbulence and Shear Flow Phenomena. Williamsburg. USA, 2005.Google Scholar
  3. 3.
    G. Byun and R. L. Simpson. Structure of three-dimensional separated flow on an axisymmetric bump. AIAA J., 44(5):999–1008, 2006.Google Scholar
  4. 4.
    C. Wang, Y. J. Jang, and M. A. Leschziner. Modelling two and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures. Int. J. Heat Fluid Flow, 25:499–512, 2004.CrossRefGoogle Scholar
  5. 5.
    M. Breuer and W. Rodi. Large eddy simulation of complex turbulent flows of practical interest. In E.H. Hirschel, editor, Flow simulation with high performance computers II, volume 52 of Notes on Numerical Fluid Mechanics, pages 258–274. Vieweg, Braunschweig, 1996.Google Scholar
  6. 6.
    J. Fröhlich and W. Rodi. LES of the flow around a cylinder of finite height. Int. J. Heat Fluid Flow, 25:537–548, 2004.CrossRefGoogle Scholar
  7. 7.
    J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner. Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech., 526:19–66, 2005.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    N. Patel, C. Stone, and S. Menon. Large-Eddy Simulation of turbulent flow over an axisymmetric hill. AIAA paper no. 2003-0967, 2003.Google Scholar
  9. 9.
    C. Fureby, N. Alin, N. Wikström, S. Menon, N. Svanstedt, and L. Persson. Large-Eddy Simulation of high-Reynolds number wall-bounded flows. AIAA J., 42(3):457–468, 2004.Google Scholar
  10. 10.
    N. Li, C. Wang, M.A. Leschziner, and L. Temmerman. Large eddy simulation of separation from a three-dimensional hill and comparison with second-moment closure RANS modelling. In Proc. 4th Int. Symposium on Turbulence and Shear Flow Phenomena. Williamsburg. USA, 2005.Google Scholar
  11. 11.
    S. Benhamadouche, J. Uribe, N. Jarrin, and D. Laurence. Large eddy simulation of a symmetric bump on structured and unstructured grids, comparison with RANS and T-RANS models. In Proc. 4th Int. Symposium on Turbulence and Shear Flow Phenomena. Williamsburg. USA, 2005.Google Scholar
  12. 12.
    T. Persson, M. Liefvendahl, R. E. Benson, and C. Fureby. Numerical investigation of the flow over an axisymmetric hill using LES, DES and RANS. J. Turbulence, 7(4):1–17, 2006.Google Scholar
  13. 13.
    S. Krajnović. Large eddy simulation of the flow around a three-dimensional axisymmetric hill. In K. Hanjalić, Y. Nagano, and S. Jakirlić, editors, Proc. Turbulence, Heat and Mass Transfer 5, 2006.Google Scholar
  14. 14.
    L. Davidson and S. Dahlströhm. Hybrid LES-RANS: computation of the flow around a three-dimensional hill. In W. Rodi and M. Mulas, editors, Engineering Turbulence Modelling and Experiments 6. Elsevier, 2005.Google Scholar
  15. 15.
    F. Tessicini, N. Li, and M. A. Leschziner. Simulation of three-dimensional separation with a zonal near-wall approximation. In P. Wesseling, E. Onate, and J. Périaux, editors, Proc. ECCOMAS CFD 2006, 2006.Google Scholar
  16. 16.
    C. Hinterberger. Dreidimensionale und tiefengemittelte Large-Eddy-Simulation von Flachwasserströmungen. PhD thesis, University of Karlsruhe, 2004.Google Scholar
  17. 17.
    C.M. Rhie and W.L. Chow. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J., 21(11):1061–1068, 1983.CrossRefGoogle Scholar
  18. 18.
    H.L. Stone. Iterative solution of implicit approximations of multidimensional partial differential equations for finite difference methods. SIAM J. Numer. Anal., 5:530–558, 1968.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    C.D. Pierce. Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Stanford University, 2001.Google Scholar
  20. 20.
    U. Piomelli and J. R. Chasnov. Large eddy simulation: theory and applications. In Turbulence and transition modelling, pages 269–331. Kluwer, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Manuel García-Villalba
    • 1
  • Wolfgang Rodi
    • 1
  1. 1.Institut für HydromechanikUniversität KarlsruheKarlsruheGermany

Personalised recommendations