Advertisement

Green Chemistry from Supercomputers: Car–Parrinello Simulations of Emim-Chloroaluminates Ionic Liquids

  • Barbara Kirchner
  • Ari P. Seitsonen

Abstract

Ionic liquids (IL) or room temperature molten salts are alternatives to “more toxic” liquids [1]. Their solvent properties can be adjusted to the particular problem by combining the right cation with the right anion, which makes them designer liquids. Usually an ionic liquid is formed by an organic cation combined with an inorganic anion [2, 3]. Further discussions on the subject can be found in the following review articles [4–6].

Keywords

Ionic Liquid Fast Fourier Transform Radial Distribution Function Basic Linear Algebra Subprogram Radial Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ed, P. Wasserscheid and T. Welton. Ionic Liquids in Synthesis. VCH-Wiley, Weinheim, 2003.Google Scholar
  2. 2.
    J.H. Davis. Task-specific ionic liquids. Chem. Lett., 33:1072–1077, 2004.CrossRefGoogle Scholar
  3. 3.
    A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis, and R.D. Rogers. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun., 01:135–136, 2001.CrossRefGoogle Scholar
  4. 4.
    V.A. Cocalia, K.E. Gutowski, and R. D. Rogers. The coordination chemistry of actinides in ionic liquids: A review of experiment and simulation. Coord. Chem. Rev., 150:755–764, 2006.CrossRefGoogle Scholar
  5. 5.
    T. Welton. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev., 99:2071–2083, 1999.CrossRefGoogle Scholar
  6. 6.
    T. Welton. Ionic Liquids in catalysis. Coord. Chem. Rev., 248:2459–2477, 2004.CrossRefGoogle Scholar
  7. 7.
    P.A. Hunt and I. Gould. J. Phys. Chem. A, 110:2269, 2006.CrossRefGoogle Scholar
  8. 8.
    S. Kossmann, J. Thar, B. Kirchner, P.A. Hunt, and T. Welton. Cooperativity in ionic liquids. J. Chem. Phys., 124:174506, 2006.CrossRefGoogle Scholar
  9. 9.
    Z. Liu, S. Haung, and W. Wang. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B, 108:12978, 2004.CrossRefGoogle Scholar
  10. 10.
    J.K. Shah and E.J. Maginn. Fluid Phase Equlib, 222-223:195, 2004.CrossRefGoogle Scholar
  11. 11.
    T.I. Morrow and E.J. Maginn. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B, 106:12807, 2002.CrossRefGoogle Scholar
  12. 12.
    C.J. Margulis, H.A. Stern, and B.J. Berne. Computer simulation of a “green chemistry” room-temperature ionic solvent. J. Phys. Chem. B, 106:12017, 2002.CrossRefGoogle Scholar
  13. 13.
    J. Lopes, J. Deschamps, and A. Padua. Modeling ionic liquids using a systematic all-atom force field. J. Chem. Phys. B, 108:2038, 2004.CrossRefGoogle Scholar
  14. 14.
    S. Urahata and M. Ribeiro. Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study. J. Chem. Phys., 120(4):1855, 2004.CrossRefGoogle Scholar
  15. 15.
    T. Yan, C.J. Burnham, M.G. Del Popolo, and G.A. Voth. Molecular dynamics simulation of ionic liquids: The effect of electronic polarizabilityÊ. J. Phys. Chem. B, 108:11877, 2004.CrossRefGoogle Scholar
  16. 16.
    S. Takahashi, K. Suzuya, S. Kohara, N. Koura, L.A. Curtiss, and M. Saboungi. Structure of 1-ethyl-3-methylimidazolium chloroaluminates: Neutron diffraction measurements and ab initio calculations. Z. fur Phys. Chem., 209:209, 1999.Google Scholar
  17. 17.
    Z. Meng, A. Dölle, and W.R. Carper. J. Mol. Struct., 585:119, 2002.Google Scholar
  18. 18.
    A. Chaumont and G. Wipff. Solvation of uranyl(ii) and europium(iii) cations and their chloro complexes in a room-temperature ionic liquid. a theoretical study of the effect of solvent “humidity”. Inorg. Chem., 43:5891, 2004.CrossRefGoogle Scholar
  19. 19.
    F.C. Gozzo, L.S. Santos, R. Augusti, C.S. Consorti, J. Dupont, and M.N. Eberlin. Chem. Eur. J., 10:6187, 2004.CrossRefGoogle Scholar
  20. 20.
    E.R. Talaty, S. Raja, V.J. Storhaug, A. Dölle, and W.R. Carper. J. Phys. Chem. B, 108:13177, 2004.CrossRefGoogle Scholar
  21. 21.
    Y.U. Paulechka, G.J. Kabo, A.V. Blokhin, A.O. Vydrov, J.W. Magee, and M. Frenkel. J. Chem. Eng. Data, 48:457, 2003.CrossRefGoogle Scholar
  22. 22.
    J. de Andrade, E.S. Böes, and H. Stassen. Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cations-force-field proposal and validation. J. Phys. Chem. B, 106:13344, 2002.CrossRefGoogle Scholar
  23. 23.
    B. Kirchner and A.P. Seitsonen. Ionic liquids from car-parrinello simulations, part ii: Structural diffusion leading to large anions in chloraluminate ionic liquids. Inorg. Chem., 47:2751–2754, 2007. DOI 10.1021/ic0624874.Google Scholar
  24. 24.
    J. Hutter and D. Marx. Proceeding of the february conference in Jülich. In J. Grotendorst, editor, Modern Methods and algorithms of Quantum chemistry, page 301, Jülich, 2000. John von Neumann Institute for Computing. +http://www.fz-juelich.de/nic-series/Volume1/+.Google Scholar
  25. 25.
    J. Thar, W. Reckien, and B. Kirchner. Car–parrinello molecular dynamics simulations and biological systems. In M. Reiher, editor, Atomistic Approaches in Modern Biology, volume 268, pages 133–171, Top. Curr. Chem., 2007. Springer.Google Scholar
  26. 26.
    P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, 1964.CrossRefMathSciNetGoogle Scholar
  27. 27.
    W. Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1139, 1965.CrossRefMathSciNetGoogle Scholar
  28. 28.
    W.E. Pickett. Pseudo potential methods in condensed matter applications. Comput. Phys. Rep., 115, 1989.Google Scholar
  29. 29.
    Jürg Hutter and Alessandro Curioni. Car-parrinello molecular dynamics on massively parallel computers. ChemPhysChem, 6:1788–1793, 2005.CrossRefGoogle Scholar
  30. 30.
    CPMD V3.8 Copyright IBM Corp 1990-2003, Copyright MPI für Festkörperforschung Stuttgart 1997-2001. see also www.cmpd.org.Google Scholar
  31. 31.
    J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77:3865–3868, 1996. original PBE.Google Scholar
  32. 32.
    N. Troullier and J.L. Martins. Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43:1993–2006, 1991.CrossRefGoogle Scholar
  33. 33.
    B. Kirchner, A.P. Seitsonen, and J. Hutter. Ionic Liquids from Car–Parrinello Simulations, Part I: Liquid AlCl3. J. Phys. Chem. B, 110:11475–11480, 2006.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Barbara Kirchner
    • 1
  • Ari P. Seitsonen
    • 2
  1. 1.Lehrstuhl für Theoretische ChemieUniversität LeipzigLeipzigGermany
  2. 2.IMPMCCNRS & Université Pierre et Marie CurieParisGermany

Personalised recommendations