Advertisement

Evaluation of the Masked Logic Style MDPL on a Prototype Chip

  • Thomas Popp
  • Mario Kirschbaum
  • Thomas Zefferer
  • Stefan Mangard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4727)

Abstract

MDPL has been proposed as a masked logic style that counteracts DPA attacks. Recently, it has been shown that the so-called “early propagation effect” might reduce the security of this logic style significantly. In the light of these findings, a 0.13 μm prototype chip that includes the implementation of an 8051-compatible microcontroller in MDPL has been analyzed. Attacks on the measured power traces of this implementation show a severe DPA leakage. In this paper, the results of a detailed analysis of the reasons for this leakage are presented. Furthermore, a proposal is made on how to improve MDPL with respect to the identified problems.

Keywords

DPA-Resistant Logic Styles Masked Logic Dual-Rail Precharge Logic Early Propagation Effect Improved MDPL Prototype Chip 

References

  1. 1.
    Anderson, R.J., Bond, M., Clulow, J., Skorobogatov, S.P.: Cryptographic Processors—A Survey. Proceedings of the IEEE 94(2), 357–369 (2006)CrossRefGoogle Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bucci, M., Giancane, L., Luzzi, R., Trifiletti, A.: Three-Phase Dual-Rail Pre-Charge Logic. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 232–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 242–254. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Fischer, W., Gammel, B.M.: Masking at Gate Level in the Presence of Glitches. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 187–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The ”Backend Duplication” Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Kulikowski, K.J., Karpovsky, M.G., Taubin, A.: Power Attacks on Secure Hardware Based on Early Propagation of Data. In: 12th IEEE International On-Line Testing Symposium (IOLTS 2006), July 10-12, 2006, pp. 131–138. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  9. 9.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  10. 10.
    Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Popp, T., Mangard, S.: Masked Dual-Rail Pre-Charge Logic: DPA-Resistance without Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Suzuki, D., Saeki, M.: Security Evaluation of DPA Countermeasures Using Dual-Rail Pre-charge Logic Style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 255–269. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A Countermeasure against DPA based on Transition Probability. Cryptology ePrint Archive, Report 2004/346 (2004), http://eprint.iacr.org/
  14. 14.
    Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: 2004 Design, Automation and Test in Europe Conference and Exposition (DATE 2004), Paris, France, 16-20 February 2004, vol. 1, pp. 246–251. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  15. 15.
    Tiri, K., Verbauwhede, I.: Place and Route for Secure Standard Cell Design. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., Kadam, A.A.E. (eds.) Sixth International Conference on Smart Card Research and Advanced Applications (CARDIS 2004), Toulouse, France, 23-26 August 2004, pp. 143–158. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  16. 16.
    Tiri, K., Verbauwhede, I.: A Digital Design Flow for Secure Integrated Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(7), 1197–1208 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Thomas Popp
    • 1
  • Mario Kirschbaum
    • 1
  • Thomas Zefferer
    • 1
  • Stefan Mangard
    • 2
  1. 1.Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, 8010 GrazAustria
  2. 2.Infineon Technologies AG, Security Innovation, Am Campeon 1-12, 85579 NeubibergGermany

Personalised recommendations