FPGA Design of Self-certified Signature Verification on Koblitz Curves

  • Kimmo Järvinen
  • Juha Forsten
  • Jorma Skyttä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4727)


Elliptic curve signature schemes offer shorter signatures compared to other methods and a family of curves called Koblitz curves can be used for reducing the cost of signing and verification. This paper presents an FPGA implementation designed specifically for rapid verification of self-certified identity based signatures using Koblitz curves. Verification requires computation of three elliptic curve point multiplications which are computed efficiently with 3-term multiple point multiplication and joint sparse form. Certain improvements to precomputations associated with multiple point multiplications are introduced. It is shown that, when using parallel processors, it is possible to gain considerable increases in the number of operations per second by allowing slightly longer computation times for single operations. It is demonstrated that up to 166,000 verifications per second can be computed using a single Altera Stratix II FPGA.


Point Multiplication Elliptic Curve Signature Scheme Clock Cycle Point Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  3. 3.
    Ateniese, G., de Medeiros, B.: A provably secure Nyberg-Rueppel signature variant with applications. Cryptology ePrint Archive, Report 2004/093 (2004)Google Scholar
  4. 4.
    National Institute of Standards and Technology (NIST): Digital signature standard (DSS). Federal Information Processing Standard, FIPS PUB 186-2 (2000)Google Scholar
  5. 5.
    Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)Google Scholar
  6. 6.
    Candolin, C., Lundberg, J., Kari, H.: Packet level authentication in military networks. In: Proceedings of the 6th Australian Information Warfare & IT Security Conference (2005)Google Scholar
  7. 7.
    Candolin, C.: Securing military decision making in a network-centric environment. PhD thesis, Helsinki University of Technology (2005)Google Scholar
  8. 8.
    Brumley, B.B.: Efficient three-term simultaneous elliptic scalar multiplication with applications. In: Proceedings of the 11th Nordic Workshop on Secure IT Systems, NordSec 2006, pp. 105–116 (2006)Google Scholar
  9. 9.
    Solinas, J.A.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography 19(2-3), 195–249 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Solinas, J.A.: Low-weight binary representations for pairs of integers. Technical Report CORR 2001-41, University of Waterloo, Centre for Applied Cryptographic Research (2001)Google Scholar
  12. 12.
    Proos, J.: Joint sparse forms and generating zero columns when combing. Technical Report CORR 2003-23, University of Waterloo, Centre for Applied Cryptographic Research (2003)Google Scholar
  13. 13.
    Ciet, M., Lange, T., Sica, F., Quisquater, J.J.: Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 388–400. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Brumley, B.B.: Left-to-right signed-bit τ-adic representations of n integers. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 469–478. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Nyberg, K., Rueppel, R.A.: A new signature scheme based on the DSA giving message recovery. In: Proceedings of the 1st ACM conference on Computer and Communications Security, pp. 58–61. ACM Press, New York (1993)CrossRefGoogle Scholar
  16. 16.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  17. 17.
    López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n). In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula for elliptic curves over GF(2n). IEEE Transactions in Computers 51(8), 972–975 (2002)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Information and Computation 78(3), 171–177 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Okeya, K., Takagi, T., Vuillaume, C.: Efficient representations on Koblitz curves with resistance to side channel attacks. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 218–229. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Altera: Stratix II EP2S180 DSP Development Board, Reference Manual (2005)Google Scholar
  22. 22.
    Altera: Stratix II Device Handbook (2006)Google Scholar
  23. 23.
    Standaert, F.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power analysis attacks against field programmable gate arrays. Proceedings of the IEEE 94(2), 383–394 (2006)CrossRefGoogle Scholar
  24. 24.
    Järvinen, K., Forsten, J., Skyttä, J.: Efficient circuitry for computing τ-adic non-adjacent form. In: Proceedings of the IEEE International Conference on Electronics, Circuits and Systems, ICECS 2006, pp. 232–235. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  25. 25.
    Wang, C.C., Troung, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.: VLSI architectures for computing multiplications and inverses in GF(2m). IEEE Transactions in Computers 34(8), 709–717 (1985)zbMATHCrossRefGoogle Scholar
  26. 26.
    Dimitrov, V.S., Järvinen, K.U., Jacobson, M.J., Chan, W.F., Huang, Z.: FPGA implementation of point multiplication on Koblitz curves using Kleinian integers. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kimmo Järvinen
    • 1
  • Juha Forsten
    • 1
  • Jorma Skyttä
    • 1
  1. 1.Helsinki University of Technology, Signal Processing Laboratory, Otakaari 5A, FIN-02150, EspooFinland

Personalised recommendations