Advertisement

GARCH Processes with Non-parametric Innovations for Market Risk Estimation

  • José Miguel Hernández-Lobato
  • Daniel Hernández-Lobato
  • Alberto Suárez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4669)

Abstract

A procedure to estimate the parameters of GARCH processes with non-parametric innovations is proposed. We also design an improved technique to estimate the density of heavy-tailed distributions with real support from empirical data. The performance of GARCH processes with non-parametric innovations is evaluated in a series of experiments on the daily log-returns of IBM stocks. These experiments demonstrate the capacity of the improved estimator to yield a precise quantification of market risk.

Keywords

Market Risk GARCH Model Stable Distribution Expect Shortfall Stable Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dowd, K.: Measuring Market Risk. John Wiley & Sons, Chichester (2005)Google Scholar
  2. 2.
    Campbell, J.Y., Lo, A.W., MacKinlay, A.C.: The Econometrics of Financial Markets. Princeton University Press, Princeton (1997)zbMATHGoogle Scholar
  3. 3.
    Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307–327 (1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  5. 5.
    Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Journal of Quantitative Finance 1, 223–236 (2001)Google Scholar
  6. 6.
    Ding, Z., C.W.J.G., Engle, R.F.: A long memory property of stock market returns and a new model. Journal of Empirical Finance 1(1), 83–106 (1993)CrossRefGoogle Scholar
  7. 7.
    Nolan, J.P: Stable Distributions. Birkhäuser, Basel (2002)Google Scholar
  8. 8.
    Devroye, L., Gyrfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability). Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC (1986)Google Scholar
  10. 10.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK (1995)Google Scholar
  11. 11.
    Wand, M.P., Marron, J.S., Ruppert, D.: Transformations in density estimation. with discussion and a rejoinder by the authors. Journal of the American Statistical Association 86(414), 343–361 (1991)zbMATHCrossRefGoogle Scholar
  12. 12.
    Barndorff-Nielsen, O.E.: Normal inverse gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24(1), 1–13 (1997)zbMATHCrossRefGoogle Scholar
  13. 13.
    Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Prause, K.: The generalized hyperbolic model: Estimation, financial derivatives and risk measures. PhD Dissertation, University of Freiburg (1999)Google Scholar
  15. 15.
    Kerkhof, J., Melenberg, B.: Backtesting for risk-based regulatory capital. Journal of Banking & Finance 28(8), 1845–1865 (2004)CrossRefGoogle Scholar
  16. 16.
    R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0 (2005)Google Scholar
  17. 17.
    Mittnik, S., D.T., D., C.: Computing the probability density function of the stable paretian distribution. Mathematical and Computer Modelling 29(10), 235–240 (1997)CrossRefGoogle Scholar
  18. 18.
    Wuertz, D., Others, M.: fBasics: Financial Software Collection - fBasics (2004)Google Scholar
  19. 19.
    Longin, F.M.: The asymptotic distribution of extreme stock market returns. The Journal of Business 69(3), 383–408 (1996)CrossRefGoogle Scholar
  20. 20.
    Dennis, W., Jansen, C.G.d.v.: On the frequency of large stock returns: Putting booms and busts into perspective. The Review of Economics and Statistics 73(1), 18–24 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • José Miguel Hernández-Lobato
    • 1
  • Daniel Hernández-Lobato
    • 1
  • Alberto Suárez
    • 1
  1. 1.Escuela Politécnica Superior, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 11, Madrid 28049Spain

Personalised recommendations