Methods for Characterizing the Geochemical and Microbiological Conditions

  • Sven Altfelder
  • Manfred Birke
  • Reiner Dohrmann
  • Hagen Hilse
  • Florian Jenn
  • Stephan Kaufhold
  • Klaus Knödel
  • Claus Nitsche
  • Kathrin R. Schmidt
  • Andreas Thiem
  • Hans-Jürgen Voigt
Chapter

Abstract

A geochemical investigation in the study area should be primarily focused on characterizing the complex chemical inventory of the groundwater, surface water, soil, rock, stream and lacustrine sediments, and soil gas. Geochemical site characterization includes a determination of geogenic background values and anthropogenic input. This distinction is possible only if the size of the area and the number of sampling points is adequate for a statistical evaluation. A geochemical investigation usually takes place following the geological, hydrogeological and geophysical surveys, the results of which are used for a focused and representative sampling strategy. The approach and the scope of a geochemical site investigation depend on the following:
  • the objective and phase of the investigation,

  • the contamination potential,

  • the compartment under consideration (e.g., the groundwater, soil, or air), and

  • the natural environmental conditions.

References and further reading

  1. Acton, D. W. & Barker, J. F. (1992): In-situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters. J. Contamin. Hydrol., 9, 325–352.Google Scholar
  2. Adams, J. M. & Evans, S. (1979): Determination of the cation-exchange capacity (layer charge) of small quantities of clay minerals by nephelometry. Clays Clay Minerals, 27, 137–139.Google Scholar
  3. Agboden (1996): Bodenkundliche Kartieranleitung, 4. Aufl. (AG Boden (“Soil” Working Group of the German Federal and State Geological Surveys) (1996). Soil mapping manual, 4th edn.).Google Scholar
  4. Allaby, M. (1977): A Dictionary of the Environment. Van Nostrand Reinhold, New York.Google Scholar
  5. Altes, J. (1976): Die Grenztiefe bei Setzungsberechnungen. Bauingenieur, 51, 93–96.Google Scholar
  6. Altfelder S., Streck T. & Richter J. J. (1999): Effect of air-drying on sorption kinetics of the herbicide Chlorotoluron in soil. J. Environ. Qual., 28, 1154–1161.Google Scholar
  7. Altfelder, S. & Streck, T. (2006): Capability and limitations of first-order and diffusion approaches to describe long-term sorption of chlortoluron in soil. J. Contain. Hydrol., 86, 279–298.Google Scholar
  8. Althoff, K., Mundt, M., Eisentraeger, A., Dott, W. & Hollender, J. (2001): Microcosm-experiments to assess the potential for natural attenuation of contaminated groundwater. Water Res., 35,3, 720–728.Google Scholar
  9. Amonette, J. E. & Zelazny, L. W. (Eds.) (1994): Quantitative Methods in Soil Mineralogy. Miscellaneous Publication, Soil Science Society of America, Madison.Google Scholar
  10. Andrews, J. E., Brimblecombe, P., Jickells, T., Liss, P. & Reid, B. (2004): An Introduction to Environmental Chemistry. Blackwell.Google Scholar
  11. Appelo, C.A., Van Der Weiden, M. J., Tournassat, C. & Charlet, L. (2002): Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol., 36,14, 3096–3103.Google Scholar
  12. Appelo, C. A. J.; Postma, D. (2005): Geochemistry, groundwater and pollution. 2nd edn., A. A. Balkema PublishersGoogle Scholar
  13. Aulenta, F., Bianchi, A., Majone, M., Petrangeli Papini, M., Potalivo M. & Tandoi V. (2005): Assessment of natural or enhanced in-situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Environ Int., 31,2, 185–190.Google Scholar
  14. Aulenta, F., Majone, M. Verbo, P. & Tandoi, V. (2002): Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation, 13, 411–424.Google Scholar
  15. Bache, B. W. (1970): Barium isotope method for measuring cation-exchange capacity of soils and clays. J. Sci. Food and Agric., 21, 169–171.Google Scholar
  16. Bache, B. W. (1976): The measurement of cation exchange capacity of soils. J. Sci. Food Agric., 27, 273–280.Google Scholar
  17. Bailey, S. W. (1980): Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 1–7.Google Scholar
  18. Bannert, M., Berger, W., Fischer, H., Horchler, D., Keese, K., Lehnik-Habrink, P., Lück, D., Pritzkow, J. & Win, T. (2001): Anforderungen an Probennahme Probenvorbehandlung und chemische Untersuchungsmethoden auf Bundesliegen-schaften. (Eds.), Bundesanstalt für Materialforschung und-prüfung (BAM) Berlin, Amts-und Mitteilungsblatt der BAM, Sonderheft 2/2001. www.bam.de/de/service/publikationen/publikationen_medien/probennahme.pdfGoogle Scholar
  19. Barber, C. & Briegel, D. (1987): A method for the in-situ determination of dissolved methane in groundwater in shallow aquifers. J. of Contaminant Hydrology, 2, 51–60.Google Scholar
  20. Barth, J. A. C, Slater, G., Schüth, C, Bill, M., Downey, A., Larkin, M. & Kalin, R. M. (2002): Carbon isotope fractionation during aerobic biodégradation of trichloroethene by Burkholderia cepacia G4: a tool to map degradation mechanisms. Appl. Environ. Microbiol., 68,4, 1728–1734.Google Scholar
  21. Bascomb, C. L. (1964): Rapid method for the determination of the cation exchange capacity of calcareous and non-calcareous soils. J. Sci. Food and Agric., 15, 821–823.Google Scholar
  22. Bear, J. (1972): Dynamics of fluids in porous media. Elsevier, New York.Google Scholar
  23. Behrens, W. & Feiser, J. (1995): Anmerkungen zur Berechnung der Setzungen von Deponiebauwerken. AbfallwirtschaftsJournal, 7,9, 545–549.Google Scholar
  24. Beller, H. R. (2002): Analysis of benzylsuccinates in groundwater by liquid chromatography/tandem mass spectrometry and its use for monitoring in situ BTEX biodegradation. Environ. Sci. Technol., 36, 2724–2728.Google Scholar
  25. Beller, H. R., Ding, W.-H. & Reinhard, M. (1995): Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ. Sci. Technol., 29, 2864–2870.Google Scholar
  26. Bergaya, F., Theng, B. K. G. & Lagaly, G. (Eds.) (2006): Handbook of Clay Science. Elsevier.Google Scholar
  27. Bergaya, F. & Vayer, M. (1997): CEC of clays; measurement by adsorption of a copper ethylenediamine complex. Appl. Clay Sci., 12, 275–280.Google Scholar
  28. bielefeldt a. r. & stensel h. d. 1999 biodegradation of aromatic compounds and tce by a filamentous bacteria-dominated consortium. biodegradation 10 1–13.Google Scholar
  29. bilitewski, b. härdtle, g.& marek, k.(2000):Abfallwirtschaft (Waste management). 3rd edn. Springer, Berlin.Google Scholar
  30. Bilitewski, B., Härdtle, G. & Marek, K. (2000): Abfallwirtschaft (Waste management). 3rd edn. Springer, Berlin.Google Scholar
  31. Bilitewski, B. (2001): Praktikumsskript „Altlasten“ (Laboratory notes for lecture on hazardous sites). Dresden-Pirna.Google Scholar
  32. Bjerg, P. L., Brun, A., Nielsen, P. H. & Christensen, T. H. (1996): Application of a model accounting for kinetic sorption and degradation to in situ microcosm observations on the fate of aromatic hydrocarbons in an anaerobic aquifer. Water Resources Research, 32,6, 1831–1841.Google Scholar
  33. Bjerg, P. L., Rügge, K., Cortsen, I, Nielsen, P. H. & Christensen, T. H. (1999): Degradation of aromatic and chlorinated aliphatic hydrocarbons in the anaerobic part of the Grindsted landfill leachate plume: In situ microcosm and laboratory batch experiments. Ground Water, 37,1, 113–121.Google Scholar
  34. bloom y. aravena r. hunkeler d. edwards e. & frape s. k. 2000 carbon isotope fractionation during microbial degradation of trichloroethene cis-12-dichloroethene and vinyl chloride implications for assessment of natural attenuation. environ. sci. techl. 3413 2768–2772.Google Scholar
  35. Borden R. C, Daniel R. A., LeBrun IV L. E. & Davis C. W. (1997): Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resources Research, 33,5, 1105–1115.Google Scholar
  36. borden r. c gomez c. a. & becker m. t. 1995 geochemical indicators of intrinsic bioremediation. ground water 33 2 180–189.Google Scholar
  37. Bowen, H. J. M. (1979): Environmental chemistry of the elements. Academy Press, London.Google Scholar
  38. Bradley, P. M. (2003): History and ecology of chloroethene biodegradation: A review. Bioremediation Journal, 7,2, 81–109.Google Scholar
  39. Brar, S. K. & Gupta, S. K. (2000): Biodegradation of trichloroethylene in a rotating biological contactor. Water Res., 34,17, 4207–4214.Google Scholar
  40. Breen, C. & Rock, B. J. (1991): The competitive adsorption of dyes on clays. 7th Euroclay Conference, Dresden.Google Scholar
  41. Brunauer, S., Emmett, P. H. & Teller, E. (1938): Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc., 60, 309–319.Google Scholar
  42. Brusseau, M. L. & Rao P. S. C. (1989): Sorption nonideality during organic contaminant transport in porous media. Crit. Rev. Environ. Control, 19, 33–99.Google Scholar
  43. Brusseau, M. L., Jessup, R. E. & Rao, P. S. C. (1991): Nonequilibrium Sorption of Organic Chemicals: Elucidation of Rate-Limiting Processes. Environ. Sci. and Technol., 25, 134–142.Google Scholar
  44. Buhmann, D. & Dreybrodt, W. (1987): Calcite dissolution kinetics in the system H2O-CO2-CaCO3 with participation of foreign ions. Chem. Geology, 64, 89–102.Google Scholar
  45. Bujdák J. & Komadel P. (1997): Interaction of Methylene Blue with reduced charge montmorillonite. J. Phys. Chem. B, 101, 9065.Google Scholar
  46. BUWAL (2003): Praxishilfe Grundwasserprobenahme. Bundesamt für Umwelt, Wald und Landschaft, Bern, Switzerland.Google Scholar
  47. BWK (2004): Erarbeitung von Leistungsbeschreibungen und Leistungsverzeichnissen zur Grundwasserprobenahme bei Altlasten im Lockergestein. BWK-Merkblatt 5. Gelbdruck. Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau, Pfullingen, Germany.Google Scholar
  48. Cerniglia, C. E. (1992): Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.Google Scholar
  49. Chapelle F. H., Mcmahon P. B., Dubrowsky N. M., Fujii, R. F., Oaksford E. T. & Vroblesky D. A. (1995): Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resources Research, 31, 2, 359–371.Google Scholar
  50. Chapelle, F. H. (2001): Ground-water Microbiology and Geochemistry. Wiley & Sons, New York.Google Scholar
  51. Chartrand, M. M. G., Waller, A., Mattes, T. E., Elsner, M., Lacrampe-Couloume, G., Gossett, J.M., Edwards, E. A. & Sherwood Lollar, B. (2005): Carbon isotopic fractionation during aerobic vinyl chloride degradation. Environ. Sci. Technol., 39,4, 1064–1070.Google Scholar
  52. Chhabra, R., Pleysier, J. & Cremers, A. (1975): The measurement of the cation exchange capacity and exchangeable cations in soils: A new method. Proc. Int. Clay Conf. 1975, Wilmette, Illinois, 439–449.Google Scholar
  53. Childs, C. W. (1992): Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Z. Pflanzenernähr. Bodenk., 155, 441–448.Google Scholar
  54. Chiou, C. T., Peters L. J., & Freed, V. H. (1979): A Physical Concept of Soil-Water Equilibria for Non-Ionic Compounds Science, 206, 831–832.Google Scholar
  55. Chiou, C. T., Porter P. E. & Schmeddling D. W. (1983): Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol., 17, 227–231.Google Scholar
  56. Cho, J. S., Wilson, J. T., DiGiulio, D. C, Vardy, J. A. & Choi, W. (1997): Implementation of natural attenuation at a JP-4 jet fuel release after active remediation. Biodegradation, 8, 265–273.Google Scholar
  57. Christensen, T. H., Bjerg, P. L. & Kjeldsen, P. (2001): Natural attenuation as an approach to remediation of groundwater pollution at landfills. In: Treatment of Contaminated Soil, Stegmann, R., Brunner, G., Calmano, W. & Matz, G. (Eds.), Springer, Berlin, 587–602.Google Scholar
  58. Chu, K.-H., Mahendra, S., Song, D. L., Conrad, M.E. & Alvarez-Cohen, L. (2004): Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes. Environ. Sci. Technol., 38,11, 3126–3130.Google Scholar
  59. Cohen, R. M. & Mercer, J. W. (1993): DNAPL site evaluation. Smoley, Boca Raton, FL.Google Scholar
  60. Coleman, N. V., Mattes, T. E., Gossett, J. M. & Spain, J. C. (2002a): Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl. Environ. Microbiol., 68,6, 2726–2730.Google Scholar
  61. Coleman, N. V., Mattes, T. E., Gossett, J. M. & Spain, J. C. (2002b): Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl. Environ. Microbiol., 68,12, 6162–6171.Google Scholar
  62. Cornell, R. M. & Schwertmann, U. (2003): The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim.Google Scholar
  63. Cotter-Howells, J. D. Campbell, L. S., Valsami-Jones, E. & Batchelder, M. (2000): Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management. Mineralogical Society Book Series Vol. 9.Google Scholar
  64. Cozzarelli, I. M., Baedecker, M. J., Eganhouse, R. P. & Goerlitz, D. F. (1994): The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater. Geochim. Cosmochim. Acta, 58,2, 863–877.Google Scholar
  65. Cozzarelli, I. M., Herman, J. S. & Baedecker, M. J. (1995): Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: The role of electron acceptors. Environ. Sci. Technol., 29, 458–469.Google Scholar
  66. Cremers, A. & Pleysier, J. (1973a): Adsorption of the silver-thiourea complex in montmorillonite clay. Nature Phys. Sci., 243, 86–87.Google Scholar
  67. Cremers, A. & Pleysier, J. (1973b): Coordination of silver in silver-thiourea montmorillonite. Nature Phys. Sci., 244, 93.Google Scholar
  68. Danko, A. S., Luo, M., Bagwell, C. E., Brigmon, R. L. & Freedman, D. L. (2004): Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl. Environ. Microbiol., 70, 10, 6092–6097.Google Scholar
  69. Davis, S. N. & Dewiest, R. J. M. (1966): Hydrogeology. Wiley & Sons, New York.Google Scholar
  70. Dékàny, I., Szántó, F. & Nagy, L. G. (1978): Selective adsorption of liquid mixtures on organophilic clay minerals. Progress in Colloid and Polymer Science, 65, 125–132.Google Scholar
  71. Deller, B. (1981): Determination of exchangeable acidity, carbonate ions and change of buffer in triethanolamine-buffered solutions percolated through soil samples containing carbonates. Commun. Soil Sci. Plant Analysis, 12, 161–177.Google Scholar
  72. DIN 1319-3 Fundamentals of metrology — Part 3: Evaluation of measurements of a single measurand, measurement uncertainty. Beuth, Berlin.Google Scholar
  73. DIN 1319-4 Fundamentals of metrology — Part 4: Evaluation of measurements; uncertainty of measurement. Beuth, Berlin.Google Scholar
  74. DIN 4019-1, Sbsoil; Settlement Calculations for Perpendicular Central Loading. Beuth, Berlin.Google Scholar
  75. DIN 4021 Soil; exploration by excavation and borings; sampling. Beuth, Berlin.Google Scholar
  76. DIN 4022-1 Subsoil and groundwater; classification and description of soil and rock; borehole logging of soil and rock not involving continuous core sample recovery. Beuth, Berlin.Google Scholar
  77. DIN 4022-2 Subsoil and groundwater; Designation and description of soil types and rock; Stratigraphic representation for borings in rock. Beuth, Berlin.Google Scholar
  78. DIN 4022-3 Subsoil and groundwater; Designation and description of soil types and rock; Borehole log for boring in soil (loose rock) by continuous extraction of cores. Beuth, Berlin.Google Scholar
  79. DIN 4023 Borehole logging; graphical representation of the results. Beuth, Berlin.Google Scholar
  80. DIN 4030-1 Assessment of water, soil and gases for their aggressiveness to concrete; principles and limiting values. Beuth, Berlin.Google Scholar
  81. DIN 4030-2 Assessment of water, soil and gases for their aggressiveness to concrete; collection and examination of water and soil samples. Beuth, Berlin.Google Scholar
  82. DIN 4049-1 Hydrology; basic terms. Beuth, Berlin.Google Scholar
  83. DIN 4049-2 Hydrology; terms relating to quality of waters. Beuth, Berlin.Google Scholar
  84. DIN 4049-3 Hydrology — Part 3: Terms for the quantitative hydrology. Beuth, Berlin.Google Scholar
  85. DIN 4084 Subsoil; Calculations of terrain rupture and slope rupture. Beuth, Berlin.Google Scholar
  86. DIN 4124 Excavations and trenches — Slopes, planking and strutting, breadths of working spaces. Beuth, Berlin.Google Scholar
  87. DIN 18123 Soil, investigation and testing — Determination of grain-size distribution. Beuth, Berlin.Google Scholar
  88. DIN 18129 Soil, investigation and testing — Determination of lime content. Beuth, Berlin.Google Scholar
  89. DIN 19682-2 Methods of soil investigations for agricultural water engineering — Field tests — Part 2: Determination of soil texture. Beuth, Berlin.Google Scholar
  90. DIN 19684-3 Methods of soil investigations for agricultural water engineering — Chemical laboratory tests — Part 3: Determination of the loss on ignition and the residue of soil after ignition. Beuth, Berlin.Google Scholar
  91. DIN 19711 Graphical and letter symbols for hydrogeology. Beuth, Berlin.Google Scholar
  92. DIN 19730 Soil quality — Extraction of trace elements with ammonium nitrate solution. Beuth, Berlin.Google Scholar
  93. DIN 19731 Soil quality — Utilization of soil material. Beuth, Berlin.Google Scholar
  94. DIN 19734 Soil quality — Determination of chromium(VI) in phosphate extract. Beuth, Berlin.Google Scholar
  95. DIN 19738 Soil quality — Absorption availability of organic and inorganic pollutants from contaminated soil material. Beuth, Berlin.Google Scholar
  96. DIN 32645 Chemical analysis; decision limit; detection limit and determination limit; estimation in case of repeatability; terms, methods, evaluation. Beuth, Berlin.Google Scholar
  97. DIN 38402-12 German standard methods for the examination of water, waste water and sludge; general information (group A); sampling from barrages and lakes (A 12). Beuth, Berlin.Google Scholar
  98. DIN 38402-13 German standard methods for the examination of water, waste water and sludge; general information (group A); sampling from aquifers (A 13). Beuth, Berlin.Google Scholar
  99. DIN 38402-15 German standard methods for the examination of water, waste water and sludge; general information (group A); sampling of flowing waters (A 15). Beuth, Berlin.Google Scholar
  100. DIN 38404-5 German standard methods for examination of water, waste water and sludge; physical and physico-chemical characteristics (group C); determination of pH value (C5). Beuth, Berlin.Google Scholar
  101. DIN 38405-1 German standard methods for the examination of water, waste water and sludge; anions (group D); determination of chloride ions (D 1). Beuth, Berlin.Google Scholar
  102. DIN 38405-4 German standard methods for the examination of water, waste water and sludge; anions (group D); determination of fluoride (D 4). Beuth, Berlin.Google Scholar
  103. DIN 38405-5 German standard methods for the examination of water, waste water and sludge; anions (group D); determination of sulfate ions (D 5). Beuth, Berlin.Google Scholar
  104. DIN 38405-9 German standard methods for examination of water, waste water and sludge; anions (group D), determination of nitrate ion (D9). Beuth, Berlin.Google Scholar
  105. DIN 38405-13 German Standard Methods for the Analysis of Water, Waste Water and Sludge; Anions (Group D); Determination of Cyanides (D 13). Beuth, Berlin.Google Scholar
  106. DIN 38405-14 German standard methods for the examination of water, waste water and sludge; anions (group D); determination of cyanides in drinking water, and in groundwater and surface water with low pollution levels (D 14).Google Scholar
  107. DIN 38405-23 German standard methods for the examination of water, waste water and sludge — Anions (Group D) — Part 23: Determination of selenium by atomic absorption spectrometry (D 23). Beuth, Berlin.Google Scholar
  108. DIN 38405-24 German standard methods for the examination of water, waste water and sludge; anions (group D); photometric determination of chromium(VI) using 1,5-diphenylcarbonohydrazide (D 24). Beuth, Berlin.Google Scholar
  109. DIN 38405-26 German standard methods for the examination of water, waste water and sludge; anions (group D); determination of dissolved sulfide by spectrometry (D 26). Beuth, Berlin.Google Scholar
  110. DIN 38405-32 German standard methods for the examination of water, waste water and sludge — Anions (group D) — Part 32: Determination of antimony by atomic absorption spectrometry (D 32). Beuth, Berlin.Google Scholar
  111. DIN 38406-5 German standard methods for the examination of water, waste water and sludge; cations (group E); determination of ammonia-nitrogen (E 5). Beuth, Berlin.Google Scholar
  112. DIN 38406-6 German standard methods for the examination of water, waste water and sludge — Cations (group E) — Part 6: Determination of lead by atomic absorption spectrometry (AAS) (E 6). Beuth, Berlin.Google Scholar
  113. DIN 38406-7 German standard methods for the examination of water, waste water and sludge; cations (group E); determination of copper by atomic absorption spectrometry (AAS) (E 7). Beuth, Berlin.Google Scholar
  114. DIN 38406-E7 German standard methods for the examination of water, waste water and sludge; cations (group E); determination of copper by atomic absorption spectrometry (AAS) (E 7). Beuth, Berlin.Google Scholar
  115. DIN 38406-8 German standard methods for examination of water, waste water and sludge — Cations (group E) — Part 8: Determination of zinc — Method by atomic absorption spectrometry (AAS) using an air-ethine flame (E 8). Beuth, Berlin.Google Scholar
  116. DIN 38406-11 German standard methods for the examination of water, waste water and sludge; cations (group E); determination of nickel by atomic absorption spectrometry (AAS) (E 11). Beuth, Berlin.Google Scholar
  117. DIN 38406-13 German standard methods for the examination of water, waste water and sludge; cations (group E); determination of potassium by atomic absorption spectrometry (AAS) using an air-acetylene flame (E 13). Beuth, Berlin.Google Scholar
  118. DIN 38406-14 German standard methods for the examination of water, waste water and sludge; cations (group E); determination of sodium by atomic absorption spectrometry (ASS) using an air-acetylene flame (E 14). Beuth, Berlin.Google Scholar
  119. DIN 38406-24 German standard methods for the examination of water, waste water and sludge; cations (group E); determination of cobalt by atomic absorption spectrometry (AAS) (E 24). Beuth, Berlin.Google Scholar
  120. DIN 38406-26 German standard methods for the examination of water, waste water and sludge — Cations (group E) — Part 26: Determination of thallium by atomic absorption spectrometry (AAS) using electrothermal atomisation (E 26). Beuth, Berlin.Google Scholar
  121. DIN 38406-28 German standard methods for the examination of water, waste water and sludge — Cations (group E) — Part 28: Determination of dissolved barium by atomic absorption spectrometry (E 28). Beuth, Berlin.Google Scholar
  122. DIN 38406-32 German standard methods for the examination of water, waste water and sludge — Cations (group E) — Part 32: Determination of iron by atomic absorption spectrometry (E 32). Beuth, Berlin.Google Scholar
  123. DIN 38406-33 German standard methods for the examination of water, waste water and sludge — Cations (group E) — Part 33: Determination of manganese by atomic absorption spectrometry (E 33). Beuth, Berlin.Google Scholar
  124. DIN 38407-2 German standard methods for the determination of water, waste water and sludge; jointly determinable substances (group F); determination of low volatile halogenated hydrocarbons by gas chromatography (F 2). Beuth, Berlin.Google Scholar
  125. DIN 38407-3 German standard methods for the determination of water, waste water and sludge — Jointly determinable substances (group F) — Part 3: Determination of polychlorinated biphenyls (F 3). Beuth, Berlin.Google Scholar
  126. DIN 38407-8 German standard methods for the examination of water, waste water and sludge — Jointly determinable substances (group F) — Part 8: Determination of 6 polynuclear aromatic hydrocarbons (PAH) in water by high performance liquid chromatography (HPLC) with fluorescence detection (F 8). Beuth, Berlin.Google Scholar
  127. DIN 38407-9 German standard methods for the examination of water, waste water and sludge; substance group analysis (group F); determination of benzene and some of its derivatives by gas chromatography (F 9). Beuth, Berlin.Google Scholar
  128. DIN 38407-14 German standard methods for the examination of water, waste water, and sludge — Jointly determinable substances (group F) — Part 14: Determination of phenoxyalkyl carbonic acids by gas chromatography and mass-spectrometric detection after solid-liquid-extraction and derivatization (F 14). Beuth, Berlin.Google Scholar
  129. DIN 38409-1 German standard methods for the examination of water, waste water and sludge; parameters characterizing effects and substances (group H); determination of total dry residue, filtrate dry residue and residue on ignition (H 1). Beuth, Berlin.Google Scholar
  130. DIN 38409-8 German standard methods for the examination of water, waste water and sludge; summary indices of actions and substances (group H); determination of extractable organically bonded halogens (EOX) (H 8). Beuth, Berlin.Google Scholar
  131. DIN 38409-16 German standard methods for the examination of water, waste water and sludge; general measures of effects and substances (group H); determination of the phenol index (H 16). Beuth, Berlin.Google Scholar
  132. DIN 38409-41 German Standard Methods for Examination of Water, Waste Water and Sludge; Summary Action and Material Characteristic Parameters (Group H); Determination of the Chemical Oxygen Demand (COD) in the Range over 15 mg/1 (H41). Beuth, Berlin.Google Scholar
  133. DIN 38413-2 German standard methods for the examination of water, waste water and sludge; individual constituents (group P); determination of vinyl chloride by headspace gas chromatography (P 2). Beuth, Berlin.Google Scholar
  134. DIN 38414-4 German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of leachability by water (S 4). Beuth, Berlin.Google Scholar
  135. DIN 38414-17 German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of strippable and extractable organically bound halogens (S 17). Beuth, Berlin.Google Scholar
  136. DIN 38414-18 German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of adsorbed organically bound halogens (AOX) (S 18). Beuth, Berlin.Google Scholar
  137. DIN 38414-20 German standard methods for the examination of water, waste water and sludge — Sludge and sediments (group S) — Part 20: Determination of 6 polychlorinated biphenyls (PCB) (S 20). Beuth, Berlin.Google Scholar
  138. DIN 38414-22 German standard methods for the examination of water, waste water and sludge — Sludge and sediments (group S) — Part 22: Determination of dry residue by freezing and preparation of the freeze dried mass of sludge (S 22). Beuth, Berlin.Google Scholar
  139. DIN 38414-23 German standard methods for the examination of water, waste water and sludge — Sludge and sediments (group S) — Part 23: Determination of 15 polycyclic aromatic hydrocarbons (PAH) by high performance liquid chromatography (HPLC) and fluorescence detection (S 23). Beuth, Berlin.Google Scholar
  140. DIN 38414-24 German standard methods for the examination of water, waste water and sludge — Sludge and sediments (group S) — Part 24: Determination of polychlorinated dibenzodioxins (PCDD) and polychlorinated dibenzofuranes (PCDF) (S 24). Beuth, Berlin.Google Scholar
  141. DIN 51084 Testing of oxidic raw materials for ceramic, glass and glazes; determination of fluoride content. Beuth, Berlin.Google Scholar
  142. DIN 51527-1 Testing of petroleum products; determination of polychlorinated biphenyls (PCB); preseparation by liquid chromatography and determination of six selected PCB compounds by gas chromatography using an electron capture detectorGoogle Scholar
  143. DIN EN 932-1 Test for general properties of aggregates — Part 1: Methods for sampling; German version EN 932-1:1996. Beuth, Berlin.Google Scholar
  144. DIN EN 1233 Water quality — Determination of chromium — Atomic absorption spectrometric methods. Beuth, Berlin.Google Scholar
  145. DIN EN 1483 Water quality — Determination of mercury. Beuth, Berlin.Google Scholar
  146. DIN EN 1484 (H14) Water analysis — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Beuth, Berlin.Google Scholar
  147. DIN EN 12338 Water quality — Determination of mercury — Methods after enrichment by amalgamation. Beuth, Berlin.Google Scholar
  148. DIN EN 12673 Water quality — Gas Chromatographic determination of some selected chlorophenols in water. Beuth, Berlin.Google Scholar
  149. DIN EN 25663 Water quality; determination of Kjeldahl nitrogen; method after mineralization with selenium. Beuth, Berlin.Google Scholar
  150. DIN EN 25667-2 Water quality; sampling; part 2: guidance on sampling techniques. Beuth, Berlin.Google Scholar
  151. DIN EN 25813 Water quality; determination of dissolved oxygen; iodometric method. Beuth, Berlin.Google Scholar
  152. DIN EN 25814 Water quality; determination of dissolved oxygen by the electrochemical probe method. Beuth, Berlin.Google Scholar
  153. DIN EN 26777 Water quality; determination of nitrite; molecular absorption spectrometric method. Beuth, Berlin.Google Scholar
  154. DIN EN 27888 Water quality; determination of electrical conductivity. Beuth, Berlin.Google Scholar
  155. DIN EN ISO 5667-3 Water quality — Sampling — Part 3: Guidance on the preservation and handling of water samples (ISO 5667-3); German version EN ISO 5667-3. Beuth, Berlin.Google Scholar
  156. DIN EN ISO 5961 Water quality — Determination of cadmium by atomic absorption spectrometry. Beuth, Berlin.Google Scholar
  157. DIN EN ISO 6468 Water quality — Determination of certain organochlorine insecticides, polychlorinated biphenyls and chlorobenzenes — Gas-chromatographic method after liquid-liquid extraction. Beuth, Berlin.Google Scholar
  158. DIN EN ISO 7027 Water quality — Determination of turbidity. Beuth, Berlin.Google Scholar
  159. DIN EN ISO 7887 Water quality — Examination and determination of colour. Beuth, Berlin.Google Scholar
  160. DIN EN ISO 7980 Water quality — Determination of calcium and magnesium — Atomic absorption spectrometric method. Beuth, Berlin.Google Scholar
  161. DIN EN ISO 9377-2 Water quality — Determination of hydrocarbon oil index — Part 2: Method using solvent extraction and gas chromatography. Beuth, Berlin.Google Scholar
  162. DIN EN ISO 10301 Water quality — Determination of highly volatile halogenated hydrocarbons — Gas-chromatographic methods. Beuth, Berlin.Google Scholar
  163. DIN EN ISO 10304-1 Water quality — Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulfate ions, using liquid chromatography of ions — Part 1: Method for water with low contamination. Beuth, Berlin.Google Scholar
  164. DIN EN ISO 10304-3 Water quality — Determination of dissolved anions by liquid chromatography of ions — Part 3: Determination of chromate, iodide, sulfite, thiocyanate and thiosulfate. Beuth, Berlin.Google Scholar
  165. DIN EN ISO 11732 Water quality — Determination of ammonium nitrogen — Method by flow analysis (CFA and FIA) and spectrometric detection. Beuth, Berlin.Google Scholar
  166. DIN EN ISO 11885 Water quality — Determination of 33 elements by inductively coupled plasma atomic emission spectroscopy. Beuth, Berlin.Google Scholar
  167. DIN EN ISO 11969 Water quality — Determination of arsenic — Atomic absorption spectrometric method (hydride technique). Beuth, Berlin.Google Scholar
  168. DIN EN ISO 10695 Water quality — Determination of selected organic nitrogen and phosphorus compounds — Gas Chromatographic methods. Beuth, Berlin.Google Scholar
  169. DIN EN ISO 13395 Water quality — Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection. Beuth, Berlin.Google Scholar
  170. DIN EN ISO 14403 Water quality — Determination of total cyanide and free cyanide by continuous flow analysis. Beuth, Berlin.Google Scholar
  171. DIN EN ISO 15913 Water quality — Determination of selected phenoxyalkanoic herbicides, including bentazones and hydroxybenzonitriles by gas chromatography and mass spectrometry after solid phase extraction and derivatization. Beuth, Berlin.Google Scholar
  172. DIN EN ISO 17294-2 Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) — Part 2: Determination of 62 elements (ISO 17294-2:2003); German version EN ISO 17294-2:2004. Beuth, Berlin.Google Scholar
  173. DIN ISO 9964-3 Water quality — Determination of sodium and potassium — Part 3: Determination of sodium and potassium by flame emission spectrometry. Beuth, Berlin.Google Scholar
  174. DIN ISO 10381-1 Soil quality — Sampling — Part 1: Guidance on the design of sampling programmes. Beuth, Berlin.Google Scholar
  175. DIN ISO 10381-2 Soil quality — Sampling — Part 2: Guidance on sampling techniques. Beuth, Berlin.Google Scholar
  176. DIN ISO 10381-3 Soil quality — Sampling — Part 3: Guidance on safety. Beuth, Berlin.Google Scholar
  177. DIN ISO 10381-4 Soil quality — Sampling — Part 4: Guidance on the procedure for investigation of natural, near-natural and cultivated sites. Beuth, Berlin.Google Scholar
  178. DIN ISO 10381-5 Soil quality — Sampling — Part 5: Guidance on the procedure for the investigation of urban and industrial sites with regard to soil contamination. Beuth, Berlin.Google Scholar
  179. DIN ISO 10382 Soil quality — Determination of organochlorine pesticides and polychlorinated biphenyls — Gas-chromatographic method with electron capture detection. Beuth, Berlin.Google Scholar
  180. DIN ISO 10694 Soil quality — Determination of organic and total carbon after dry combustion (elementary analysis). Beuth, Berlin.Google Scholar
  181. DIN ISO 11047 Soil quality — Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc in aqua regia extracts of soil — Flame and electrothermal atomic absorption spectrometric methods. Beuth, Berlin.Google Scholar
  182. DIN ISO 11074-1 Soil quality — Vocabulary — Part 1: Terms and definitions relating to the protection and pollution of the soil. Beuth, Berlin.Google Scholar
  183. DIN ISO 11261 Soil quality — Determination of total nitrogen — Modified Kjeldahl method. Beuth, Berlin.Google Scholar
  184. DIN ISO 11262 Soil quality — Determination of cyanide. Beuth, Berlin.Google Scholar
  185. DIN ISO 11264 Soil quality — Determination of herbicides using high performance liquid chromatography with UV-detection. Beuth, Berlin.Google Scholar
  186. DIN ISO 11265 Soil quality — Determination of the specific electrical conductivity. Beuth, Berlin.Google Scholar
  187. DIN ISO 11272 Soil quality — Determination of dry bulk density. Beuth, Berlin.Google Scholar
  188. DIN ISO 11277 Soil quality — Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation. Beuth, Berlin.Google Scholar
  189. DIN ISO 11464 Soil quality — Pretreatment of samples for physico-chemical analysis. Beuth, Berlin.Google Scholar
  190. DIN ISO 11465 Soil quality — Determination of dry matter and water content on a mass basis — Gravimetric method. Beuth, Berlin.Google Scholar
  191. DIN ISO 11466 Soil quality — Extraction of trace elements soluble in aqua regia. Beuth, Berlin.Google Scholar
  192. DIN ISO 13877 Soil quality — Determination of polynuclear aromatic hydrocarbons — Method using high-performance liquid Chromatographic. Beuth, Berlin.Google Scholar
  193. DIN ISO 14154 Soil quality — Determination of some selected chlorophenols in soils — Gaschromatographic method. Beuth, Berlin.Google Scholar
  194. DIN ISO 14507 Soil quality — Pretreatment of samples for determination of organic contaminants. Beuth, Berlin.Google Scholar
  195. DIN V 4019-100 Soil — Analysis of settlement — Part 100: Analysis in accordance with partial safety factor concept. Pre-standard. Beuth, Berlin.Google Scholar
  196. DIN V 19736 (1998): Soil quality — Derivation of concentrations of organic pollutants in soil water (Vornorm). Beuth, Berlin.Google Scholar
  197. Dohrmann, R. (1997): Kationenaustauschkapazität von Tonen — Bewertung bisheriger Analysenverfahren und Vorstellung einer neuen und exakten Silber-Thioharnstoff-Methode. PhD thesis RWTH Aachen, AGB-Verlag No. 26.Google Scholar
  198. Dohrmann, R. (2006a): Problems in CEC determination of calcareous clayey sediments using the ammonium acetate method. J. Plant Nutr. Soil Sci., 169, 330–334.Google Scholar
  199. Dohrmann, R. (2006b): Cation Exchange Capacity Methodology II: proposal for a modified silver-thiourea method. Appl. Clay Sci., 34, 38–46.Google Scholar
  200. Dohrmann, R. (2006c): Cation Exchange Capacity Methodology III: Correct exchangeable calcium determination of calcareous clays using a new silver-thiourea method. Appl. Clay Sci., 34, 47–57.Google Scholar
  201. Dohrmann, R. (2006d): Cation Exchange Capacity Methodology I: An Efficient Model for the Detection of Incorrect Cation Exchange Capacity and Exchangeable Cation Results. Appl. Clay Sci., 34, 31–37.Google Scholar
  202. Dräger (2001): Dräger-Röhrchen-/ CMS-Handbuch (Manual for indicating test tubes / CMS). Dräger Sicherheitstechnik, Lübeck, Germany.Google Scholar
  203. Drescher, J. (1997): Deponiebau. Ernst, Berlin.Google Scholar
  204. DVWK (1992): Entnahme und Untersuchungsumfang von Grundwasserproben. DVWK-Regeln 128.Google Scholar
  205. DVWK (1997): Tiefenorientierte Probenahme aus Grundwassermessstellen. DVWK-Merkblätter 245, Bonn.Google Scholar
  206. Dyreborg, S., Arvin, E. & Broholm, K. (1997): Biodegradation of NSO compounds under different redox conditions. J. Cont. Hydrol., 25, 177–197.Google Scholar
  207. El Fantroussi, S., Naveau, H. & Agathos, S. N. (1998): Anaerobic dechlorinating bacteria. Biotechnol. Prog., 14, 167–188.Google Scholar
  208. EN ISO 5667-3 (2003): Water quality — Sampling — Part 3: Guidance on the preservation and handling of water samples. International Organization for Standardization, Geneva.Google Scholar
  209. epa_criteria.rep_parameter, downloaded: 13/11/2006.Google Scholar
  210. EPA (2006b): EPA On-line Tools for Site Assessment Calculation. www.epa.gov/athens/learn2model/part-two/onsite/ard_onsite.htmGoogle Scholar
  211. EU Heater project (2006): Heater Experiment: Rock and bentonite thermo-hydromechanical (THM) processes in the near field of a thermal source for development of deep underground high level radioactive waste repositories. — Final technical publishable report project: FISS-2001-00024, Contract No. FIKW-CT-2001-00132.Google Scholar
  212. Fang, Z. (1995): Flow injection atomic absorption spectrometry. Wiley & Sons, New York.Google Scholar
  213. Farmer, V. C. (1974): The infrared Spectra of Minerals. Mineralogical Society Monograph 4, London.Google Scholar
  214. Fathepure, B. Z., Elango, V. K., Singh, H. & Bruner, M. A. (2005): Bioaugmentation potential of a vinyl chloride-assimilating Mycobacterium sp., isolated from a chloroethene-contaminated aquifer. FEMS Microbiol. Lett., 248, 227–234.Google Scholar
  215. Fennell, D., Carroi, A., Gossett, J. & Zinder, S. (2001): Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using micorocosms, polymerase chain reaction analysis and site data. Environ. Sci. Technol., 35,1, 1830–1839.Google Scholar
  216. Fetter, C. W. (1994): Applied hydrogeology. MacMillan College Publishing, Co.Google Scholar
  217. Fetzner, S. (1998): Bacterial dehalogenation. Appl. Microbiol. Biotechnol., 50, 633–657.Google Scholar
  218. Francis, C. W. & Grigal, D. F. (1971): A rapid and simple procedure using 85Sr for determining cation exchange capacities of soils and clays. Soil Sci., 112, 17–21.Google Scholar
  219. Frank, K. (1991): Tongesteine. Retention von Schwermetallen und die Einflußnahme künstlicher Komplexbildner. Schriftenreihe Angew. Geologie, 11. Google Scholar
  220. Freeze, R. A. & Cherry, J. A. (1979): Groundwater. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  221. Fritsche, W. & Hofrichter, M. (2000): Aerobic degradation by microorganisms, in Biotechnology, Rehm, H.-J. & Reed, G. (Eds.), Vol. 11b Environmental Processes II, Wiley-VCH, Weinheim.Google Scholar
  222. GDA (1993): Empfehlungen des Arbeitskreises „Geotechnik der Deponien und Altlasten“ GDA. 2. Aufl., Deutsche Gesellschaft für Erd-und Grundbau e.V., GDA E 3-3 3; Ernst, Berlin.Google Scholar
  223. Geyer, R., Peacock, A. D., Miltner, A., Richnow, H. H., White, D. C, Sublette, K. L. & Kästner, M. (2005): In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene. Environ. Sci. Technol., 39,13, 4983–4989.Google Scholar
  224. Gieg, L. M. & Suflita, J. M. (2002): Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ. Sci. Technol., 36,17, 3755–3762.Google Scholar
  225. Gillham, R. W. & O’Hannasin, S. F. (1994): Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater, 32,6, 958–967.Google Scholar
  226. Gillham, R. W., Robin, M. J. L. & Ptacek, C. J. (1990a): A device for in situ determination of geochemical transport parameters 1. Retardation. Ground Water, 28,5, 666–672.Google Scholar
  227. Gillham, R. W., Starr, R. C. & Miller, D. J. (1990b): A device for in situ determination of geochemical transport parameters 2. Biochemical Reactions. Ground Water, 28,5, 858–862.Google Scholar
  228. Graf Von Reichenbach, H. (1966): Anomalien des Kationenaustausches bei Vermiculiten. Z. Pflanzenernährung Bodenkunde, 113, 203.Google Scholar
  229. Grbic-Galic, D. (1990): Methanogenic transformation of aromatic hydrocarbons and phenols in groundwater aquifers. Geomicrobiol. J., 8, 167–200.Google Scholar
  230. Grbic-Galic & D. Vogel, T. M. (1987): Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol., 53,2, 254–260.Google Scholar
  231. Griebler, C, Safinowski, M., Vieth, A., Richnow, H. H. & Meckenstock, R. U. (2004): Combined application of stable carbon isotope fractionation for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ. Sci. Technol., 38,2, 617–631.Google Scholar
  232. Grim, R. E. (1962): Applied Clay Mineralogy. McGraw-Hill, New York.Google Scholar
  233. Hang, P. T. & Brindley, G. W. (1970): Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities. Clays Clay Minerals, 10, 203–212.Google Scholar
  234. Harrison, R. M. (Ed.) (1999): Understanding Our Environment. An Introduction to Environmental Chemistry and Pollution. Third Edition. Royal Society of Chemistry.Google Scholar
  235. Hartog, N., Griffioen, J. & Van der Weijden, C. H. (2002): Distribution and reactivity of O2-reducing components in sediments from a layered aquifer. Environ. Sci. Technol., 36, 2338–2344.Google Scholar
  236. He, I, Sung, Y., Dollhopf, M. E., Fathepure, B. Z., Tiedje, J. M. & Läffler, F. E. (2002): Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ. Sci. Technol., 36,18, 3945–3952.Google Scholar
  237. Heinrichs, H. & Herrmann, A. G. (1990): Praktikum der analytischen Geochemie. Springer, Berlin.Google Scholar
  238. Hendrickson, E., Payne, I, Young, R., Starr, M., Perry, M., Fahnestock, S., Ellis, D. & Ebersole, C. (2002): Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl. Environ. Microbiol., 68,2, 485–495.Google Scholar
  239. Heron, G. & Christensen, T. H. (1995): Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer. Environ. Sci. Technol., 29, 187–192.Google Scholar
  240. Hiltmann, W. & Stribrny, B. (1998): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Bd. 5, Tonmineralogie und Bodenphysik, Springer, Berlin.Google Scholar
  241. Hirschorn, S. K., Dinglasan, M. J., Elsner, M., Mancini, S. A., Lacrampe-Couloume, G., Edwards, E. A., Sherwood Lollar, B. (2004): Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environ. Sci. Technol., 3,18, 4775–4781.Google Scholar
  242. Hohnstock-Ashe, A. M., Plummer, S. M., Yager, R. M., Baveye, P. & Madsen, E. L. (2001): Further biogeochemical characterization of a trichloroethene-contaminated fractured dolomite aquifer: electron source and microbial communities involved in reductive dechlorination. Environ. Sci. Technol., 35,22, 4449–4456.Google Scholar
  243. Hopmans, J. W. & Dane, J. H. (1986): Temperature Dependence of Soil Hydraulic Properties. Soil Sci. Soc. Am. Journal, 50, 1.Google Scholar
  244. Houben, G. J. 2003: Iron oxide incrustations in wells. Part 1: genesis, mineralogy and geochemistry.-Applied Geochemistry, 18, 927–939.Google Scholar
  245. Houben, G. & Treskatis, C. (2006): Rehabilitation of water wells. McGraw Hill, New York.Google Scholar
  246. Hourbron, E., Escoffier, S. & Capdeville, B. (2000): Trichloroethylene elimination assay by natural consortia of heterotrophic and methanotrophic bacteria. Water Sci. Technol., 42,5-6, 395–402.Google Scholar
  247. Hunkeler, D., Aravena, R. & Cox, E. (2002): Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: laboratory experiments and modeling of isotope evolution. Environ. Sci. Technol., 36, 3378–3384.Google Scholar
  248. Hunt, M. J., Shafer, M. B., Barlaz, M. A. & Borden, R. C. (1997): Anaerobic biodégradation of alkylbenzenes in laboratory microcosms representing ambient conditions. Bioremediation J., 1, 1, 53–64.Google Scholar
  249. Hutchins, S. R. (1991): Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as terminal electron acceptor. Appl. Environ. Microbiol., 57,8, 2403–2407.Google Scholar
  250. ISO 5667-1 Water quality; Sampling; Part 1: guidance on the design of sampling programmes and sampling techniques. International Organization for Standardization, Geneva.Google Scholar
  251. ISO 5667-3 Water quality; Sampling; Part 3: Guidance on the preservation and handling of water samples. International Organization for Standardization, Geneva.Google Scholar
  252. ISO 5667-4 Water quality; Sampling; Part 4: guidance on sampling from lakes, natural and man-made. International Organization for Standardization, Geneva.Google Scholar
  253. ISO 5667-6 Water quality; sampling; Part 6: guidance on sampling of rivers and streams. International Organization for Standardization, Geneva.Google Scholar
  254. ISO 5667-11 Water quality; sampling; Part 11: guidance on sampling of groundwaters. International Organization for Standardization, Geneva.Google Scholar
  255. ISO 5667-18 Water quality — Sampling — Part 18: guidance on sampling of groundwater at contaminated sites. International Organization for Standardization, Geneva.Google Scholar
  256. ISO 6878 Water quality — Determination of phosphorus — Ammonium molybdate spectrometric method. International Organization for Standardization, Geneva.Google Scholar
  257. ISO 8165-2 Water quality — Determination of selected monovalent phenols — Part 2: Method by derivatization and gas chromatography. International Organization for Standardization, Geneva.Google Scholar
  258. ISO 8245 Water quality — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). International Organization for Standardization, Geneva.Google Scholar
  259. ISO 9377-2 Water quality — Determination of hydrocarbon oil index — Part 2: Method using solvent extraction and gas chromatography. International Organization for Standardization, Geneva.Google Scholar
  260. ISO 9562 Water quality — Determination of adsorbable organically bound halogens (AOX). International Organization for Standardization, Geneva.Google Scholar
  261. ISO 10390 Soil quality — Determination of pH. International Organization for Standardization, Geneva.Google Scholar
  262. ISO 10694 Soil quality — Determination of organic and total carbon after dry combustion (elementary analysis). International Organization for Standardization, Geneva.Google Scholar
  263. ISO 10695 Water quality — Determination of selected organic nitrogen and phosphorus compounds — Gas Chromatographic methods. International Organization for Standardization, Geneva.Google Scholar
  264. ISO 11074-2 Soil quality — Vocabulary — Part 2: Terms and definitions relating to sampling. International Organization for Standardization, Geneva.Google Scholar
  265. ISO 11262 Soil quality — Determination of cyanide. International Organization for Standardization, Geneva.Google Scholar
  266. ISO 11272 Soil quality — Determination of dry bulk density. International Organization for Standardization, Geneva.Google Scholar
  267. ISO 11277 Soil quality — Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation. International Organization for Standardization, Geneva.Google Scholar
  268. ISO 11369 Water quality — Determination of selected plant treatment agents — Method using high performance liquid chromatography with UV detection after solid-liquid extraction. International Organization for Standardization, Geneva.Google Scholar
  269. ISO 14869-1 Soil quality — Dissolution for the determination of total element content — Part 1: Dissolution with hydrofluoric and perchloric acids. International Organization for Standardization, Geneva.Google Scholar
  270. ISO 14869-2 Soil quality — Dissolution for the determination of total element content — Part 2: Dissolution by alkaline fusion. International Organization for Standardization, Geneva.Google Scholar
  271. ISO 15009 Soil quality — Gas Chromatographic determination of the content of volatile aromatic hydrocarbons, naphthalene and volatile halogenated hydrocarbons — Purge-and-trap method with thermal desorption. International Organization for Standardization, Geneva.Google Scholar
  272. ISO 15913 Water quality — Determination of selected phenoxyalkanoic herbicides, including bentazones and hydroxybenzonitriles by gas chromatography and mass spectrometry after solid phase extraction and derivatization. International Organization for Standardization, Geneva.Google Scholar
  273. ISO 16703 Soil quality — Determination of content of hydrocarbon in the range Clo to C40 by gas chromatography. International Organization for Standardization, Geneva.Google Scholar
  274. ISO 17294-2 Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) — Part 2: Determination of 62 elements. International Organization for Standardization, Geneva.Google Scholar
  275. ISO 17993 Water quality — Determination of 15 polycyclic aromatic hydrocarbons (PAH) in water by HPLC with fluorescence detection after liquid-liquid extraction. International Organization for Standardization, Geneva.Google Scholar
  276. ISO CD 16772 Soil quality — Determination of mercury in aqua regia soil extracts with cold-vapour atomic spectrometry or cold-vapour atomic fluorescence spectrometry. International Organization for Standardization, Geneva.Google Scholar
  277. ISO/DIS 5667-1 Water quality — Sampling — Part 1: Guidance on the design of sampling programmes and sampling techniques. International Organization for Standardization, Geneva.Google Scholar
  278. ISO/DIS 9377-4 Water quality — Determination of hydrocarbon oil index — Part 4: Method using solvent extraction and gas chromatography. International Organization for Standardization, Geneva.Google Scholar
  279. ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories. International Organization for Standardization, Geneva.Google Scholar
  280. ISO/ TR 11046 Soil quality — Determination of mineral oil content — Methods by infrared spectrometry and gas Chromatographic method. International Organization for Standardization, Geneva.Google Scholar
  281. Jasmund, K. & Lagaly, G. (1993): Tonminerale und Tone. Steinkopff, Darmstadt.Google Scholar
  282. Jiménez, L., Alzaga, R. & Bayona, J. M. (2002): Determination of organic contaminants in landfill leachates: a review. Int. J. Environ. Anal. Chem. 82,7, 415–430.Google Scholar
  283. Jiwan, J. & Gates, G. (1992): A Practical Guide to Groundwater Sampling, 1st ed. New South Wales Department of Water Resources, Technical Services Division, TS 92 080.Google Scholar
  284. Johansen, S. S., Hansen, A. B., Mosbaek, H. & Arvin, E. (1996): Method development for trace analysis of heteroaromatic comounds in contaminated groundwater. J. Chromatogr. A., 738, 295–304.Google Scholar
  285. Johnston, C. (1996): Sorption of organic compounds on clay minerals: A surface functional group approach. In: Sawhney, B. (Ed.), Organic pollutants in the environment, CMS Workshop Lectures, Vol. 8, The Clay Minerals Society, Boulder, Colorado, 1–44.Google Scholar
  286. Juhasz, A. L. & Naidu, R. (2000): Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int. Biodeterior. Biodegrad., 45,1-2, 57–88.Google Scholar
  287. Jury W. A., Russo D. & Sposito, G. (1987): The spatial variability of water and solute transport properties in unsaturated soil: II. Scaling models of water transport. Hilgardia 55, 33–56.Google Scholar
  288. Kany, M. (1974): Berechnung von Flächengründungen. 2. Aufl. Ernst, Berlin.Google Scholar
  289. Kästner, M. (2000): Degradation of aromatic and polyaromatic compounds, in Biotechnology, Rehm, H.-J. & Reed, G. (Eds.), Vol 11b Environmental Processes II, Wiley-VCH, Weinheim.Google Scholar
  290. Kaufhold, S. & Dohrmann, R. (2003): Beyond the Methylene Blue method: determination of the smectite content using the Cu-triene method. Zs. Angew. Geol., 49, 13–17.Google Scholar
  291. Kick, H. (1956): Bemerkungen zur T-und S-Wert-Bestimmung nach Mehlich in Böden mit höheren Gehalten an CaCO3. Z. Pflanzenernährung Düngung Bodenkunde, 75, 67–69.Google Scholar
  292. Kleeberg, R. (2005) Results of the second Reynolds Cup contest in quantitative mineral analysis. IUCr CPD Newsletter, 30, 22–26.Google Scholar
  293. Klosa, D. (1994): Eine rechnergestützte Methode zur Bestimmung des Gesamtkarbonatgehaltes in Sedimenten und Böden. — Z. Angew. Geol., 40,1, 18–21.Google Scholar
  294. Klotz, D. & Foliv, F. (1983): Eine einfache Methode zur Bestimmung der Verteilungskoeffizienten von Radionukliden im Grundwasser. GWF-Wasser/Abwasser 124, 139–141.Google Scholar
  295. Kägel-Knabner, I. & Totsche, K. U. (1998): Influence of dissolved and colloidal phase humic substances on the transport of hydrophobic organic contaminants in soils. Phys. Chem. Earth, 23, 2, 179–185.Google Scholar
  296. Kohler, E. E. (1985): Mineralogische Veränderungen von Tonen und Tonmineralen durch organische Lösungen. — In: Meseck, H. (Hrsg.): Abdichten von Deponien, Altlasten und kontaminierten Standorten. — Mitt. Inst. Grundbau u. Bodenmechanik TU Braunschweig 20, 87–94.Google Scholar
  297. Käster, H. M. (1979): Die chemische Silikatanalyse. Springer, Berlin.Google Scholar
  298. Krauskopf, K. B. & Bird, D. K. (1995): Introduction to Geochemistry. 3rd edn., McGraw-Hill, New York.Google Scholar
  299. Kukkadapu, R. K., Zachara, J. M., Fredrickson, J. K., Smith, S. C, Dohnalkova, A. C. & Russell, C. K. (2003): Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions.-Am. Mineralogist, 88, 11–12, 1903–1914.Google Scholar
  300. Lagaly, G. & Käster, H. M. (1993): Tone und Tonminerale. In Jasmund, K. & Lagaly, G. (Ed.): Tonminerale und Tone. Steinkopff, Darmstadt.Google Scholar
  301. Lagaly, G. (1985): Clay organic interactions: Problems and results. In: Schultz, L. G., scvAN OLPHEN, H. & Mumpton, F.A. (Eds.): Proc. Int. Clay Conference, Denver, 1985. The Clay Min. Soc., Bloomington, Indiana, 343–351.Google Scholar
  302. Lake, D. L., Kirk, W. W. & Lester, J. N. (1984): Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: A Review.Google Scholar
  303. Lang, H-J., Huder, J. & Amann, P. (1996): Bodenmechanik und Grundbau. 6. Aufl. Springer, Berlin.Google Scholar
  304. Langenhoff, A. A. M., Zehnder, A. J. B. & Schraa, G. (1996): Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation, 7, 267–274.Google Scholar
  305. Laniewski, A. K., Dahlen, J., Boren, H. & Grimvall, A. (1999): Determination of group parameters for organically bound chlorine, bromine and iodine in precipitation. Chemosphere, 38,4, 771–782.Google Scholar
  306. LECO (1996): CNS-2000 Elemental Analyzer — Instruction Manual. LECO Corp., St. Joseph, MI.Google Scholar
  307. Leduc, R., Samson, R., Al-Bashir, B., Al-Hawari, J. & Cseh, T. (1992): Biotic and abiotic disappearance of four PAH compounds from flooded soil under various redox conditions. Wat. Sci. Technol., 26,1-2, 51–60.Google Scholar
  308. Levine, A. D., Libelo, E. L., Bugna, G., Shelly, T., Mayfield, H. & Stauffer, T. B. (1997): Biogeochemical assessment of natural attenuation of JP-4-contaminated ground water in the presence of fluorinated surfactants. Sci. Total Environ., 208, 179–195.Google Scholar
  309. Lewis, D. R. (1949): Analytical data on reference clay materials. Sect. 3, Base-exchange data. 1950, American Petroleum Institute Project 49 Clay Mineral Standards, Preliminary Report No. 7.Google Scholar
  310. Licht, D., Ahring, B. K. & Arvin, E. (1996): Effects of electron acceptors, reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation, 7, 83–90.Google Scholar
  311. Lippmann, F. (1973): Sedimentary carbonate minerals. Springer, Berlin.Google Scholar
  312. Loan, M., Pierre, T. G. S., Parkinson, G. M., Newman, O. G. M. & Farrow, J. B. (2002). Identifying nanoscale ferrihydrite in hydrometallurgical residues. JOM, 54,12, 40.Google Scholar
  313. Läffler, F. E. & Ritalahti, K. M. (2005): Bioaugmentation: Insights from the field and application of molecular diagnostic tools. In: DECHEMA, Tagungshandbuch, Perspektiven molekularer und isotopischer Methoden zum Nachweis des natürlichen Schadstoffabbaus in Böden, 29–30 September 2005, Braunschweig, Germany, 51–57.Google Scholar
  314. Lovley, D. R. (2000): Anaerobic benzene degradation. Biodegradation, 11, 107–116.Google Scholar
  315. Lovley, D. R., Coates, J. D., Woodward, J. C. & Philllips, E. J. P. (1995): Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol., 61,3, 953–958.Google Scholar
  316. LUA NRW (1994): Determination of PAH in soil samples. Bulletins of the Environmental Agency of the State of Northrhine-Westphalia, 1. Essen, Germany.Google Scholar
  317. Luckner, L., Van Genuchten, M. Th. & Nielsen, D. R. (1989): A Consistent Set of Parametric Models for two-phase flow of immiscible fluids in the subsurface. Water Resources Research, 25,10, 2187–2193.Google Scholar
  318. Luckner, L. & Schestakow, W. M. (1991): Migration Processes in the Soil and Groundwater Zone. Lewis, Boca Raton, FL.Google Scholar
  319. Lyew, D., Tartakovsky, B., Manuel, M.-F. & Guiot, S. R. (2002): A microcosm test for potential mineralization of chlorinated compounds under coupled aerobic/anaerobic conditions. Chemosphere, 47, 695–699.Google Scholar
  320. Lynkilde, J. & Christensen, T. H. (1992): Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contamin. Hydrol., 10, 291–307.Google Scholar
  321. Malcolm, R. L. & Kennedy, V. C. (1969): Rate of cation exchange on clay minerals as determined by specific ion electrode techniques. Soil Sci. Soc Amer. Proc., 34, 247–253.Google Scholar
  322. Manahan, S. E. (2004): Environmental Chemistry. CRC Press.Google Scholar
  323. Mancini, S. A., Ulrich, A. C, Lacrampe-Couloume, G., Sleep, B., Edwards, E. A., & Sherwood Lollar, B. (2003): Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl. Environ. Microbiol., 69,1, 191–198.Google Scholar
  324. Martin, H., Heidinger, M., Ertl, S., Eichinger, L., Tiehm, A., Schmidt, K., Karch, U. & Leve, J. (2006): 13C-Isotopenuntersuchungen zur Bestimmung von Natural Attenuation — Abgrenzung und Charakterisierung eines CKW-Schadens am Standort Frankenthal. TerraTech., 3–4, 14–17.Google Scholar
  325. Mattes, T. E., Coleman, N. V., Spain, J. C. & Gossett, J. M. (2005): Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch. Microbiol., 183, 95–106.Google Scholar
  326. Maymó-Gatell, X., Chien, Y.-T., Gossett, J. M. & Zinder, S. H. (1997): Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276, 1568–1571.Google Scholar
  327. McBride, M. B. (1979): An interpretation of cation selectivity variations in M+-M+ exchange on clays. Clays Clay Minerals, 27, 417.Google Scholar
  328. McCarty, D. K. (2002): Quantitative mineral analysis of clay bearing mixtures: The Reynolds Cup contest. IUCr CPD Newsletter, 27, 12–16.Google Scholar
  329. McFarland, M. J. & Sims, R. C. (1991): Thermodynamic framework for evaluating PAH degradation in the subsurface. Ground Water, 29,6, 885–896.Google Scholar
  330. McLean, E. O. (1982): Soil pH and lime requirement. In: Methods of Soil Analysis, Part 2, 2nd edn., Page A. L. et al., Ed., Agronomy., 9, 199–224. Am. Soc. of Agron., Inc., Madison, WI.Google Scholar
  331. McNally, D. L., Mihelcic, J. R. & Lueking, D. R. (1998): Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol., 32, 2633–2639.Google Scholar
  332. McNaught, A. D. & Wilkinson, A. (1997): IUPAC Compendium of Chemical Terminology — The Gold Book. 2nd edn. Blackwell Science. Also available online: www.iupac.org/publications/compendium/index.htmlGoogle Scholar
  333. Meckenstock, R. U., Morasch, B., Griebler, C. & Richnow, H. H. (2004): Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J. Contam. Hydrol., 75, 215–255.Google Scholar
  334. Meckenstock, R. U., Annweiler, E., Michaelis, W., Richnow, H. H. & Schink, B. (2000): Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl. Environ. Microbiol., 66,7, 2743–2747.Google Scholar
  335. Mehlich, A. (1948): Determination of cation-and anion-exchange properties of soils. Soil Science, 66, 429–445.Google Scholar
  336. Mehra, O. P, & Jackson, M. L. (1960): Iron oxide removal from soils and clays by a dithionite-citrate systems buffered with sodium bicarbonate. Clays Clay Minerals, 7, 317–327.Google Scholar
  337. Meier, L. P. & Kahr, G. (1999): Determination of the Cation Exchange Capacity (CEC) of Clay Minerals using the Complexes of Copper (II) Ion with Triethylenetetramine and Tetraethylenepentamine. Clays Clay Minerals, 47, 386–388.Google Scholar
  338. Meunier, A. (2005): Clays. Springer, Berlin.Google Scholar
  339. Meunier, A. & Velde, B. (2004): Illite. Origins, Evolution and Metamorphism. Springer, Berlin.Google Scholar
  340. Middeldorp, P., Luijten, M., Van De Pas, B., Van Eekert, M., Kengen, S., Schraa, G. & Stams, A. (1999): Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Bioremediation Journal, 3, 3, 151–169.Google Scholar
  341. Mihelcic, J. R. & Luthy, R. G. (1988): Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 54,5, 1182–1187.Google Scholar
  342. Miller, M. M., Wask, S. P., Huang, G.-L., Shiu, W.-Y. & Mackay, D. (1985): Relationships between octanol-water partition coefficient and aqueous solubility. Environ. Sci. Technol., 19,6, 522–529.Google Scholar
  343. Moore, D. M., & Reynolds, R. C. (1997): X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn., Oxford University Press, New York.Google Scholar
  344. Morasch, B. & Hunkeler, D. (2005): Isotopenfraktionierung zur Bestimmung des natürlichen Abbaus von chlorierten und nicht chlorierten Kohlenwasserstoffen. In: DECHEMA, Tagungshandbuch, Perspektiven molekularer und isotopischer Methoden zum Nachweis des natürlichen Schadstoffabbaus in Böden, 29.-30. September 2005, Braunschweig, Germany, 31–38.Google Scholar
  345. Morasch, B., Richnow, H. H., Schink, B. & Meckenstock, R. U. (2001): Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: Mechanistic and environmental aspects. Appl. Environ. Microbiol., 10, 4842–4849.Google Scholar
  346. Mortland, M. M. (1970): Clay organic complexes and interactions. Advances in Agronomy, 22, 75–117.Google Scholar
  347. Mull, R., Nordmeyer, H., Boochs, P. W. & Lieth, H. (1994): Pflanzenschutzmittel im Grundwasser. Springer, Berlin.Google Scholar
  348. Müller, A., Schäfer, W., Wickert, F., Tiehm, A. (2006): Nachweis und Identifikation von Natural Attenuation Prozessen in einer LCKW-Fahne. altlasten spektrum 6/2006: in press.Google Scholar
  349. Nagra (2002): Projekt Opalinuston — Synthese der geowissenschaftlichen Untersuchungsergebnisse — Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Technischer Bericht (NTB), 02–03.Google Scholar
  350. Narine, D. R. & Guy, R. D. (1981): Interactions of some large organic cations with bentonite in dilute aqueous solutions. Clays Clay Minerals, 29, 205–212.Google Scholar
  351. NAS-NRC: National Academy of Science, National Research Council (1994): Alternatives for groundwater cleanup. National Academy Press, Washington, D.C..Google Scholar
  352. Nielsen, D. M. (1991): Practical Handbook of Ground-Water Monitoring. Lewis Publishers, Boca Raton, Fl..Google Scholar
  353. Nijenhuis, I., Andert, J., Beck, K., Kästner, M., Diekert, G. & Richnow, H. H. (2005): Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and abiotic reactions with cyanocobalamin. Appl. Environ. Microbiol., 71,7, 3413–3419.Google Scholar
  354. Nitsche, C. (1998): Grundwasserprobennahme im Umfeld von Tagebaurestlöchern und — seen. Proceedings des DGFZ e.V., Heft 13, 239–251.Google Scholar
  355. Northcott, G. L. & Jones, K. C. (2000): Spiking hydrophobic organic compounds into soil and sediment: A review and critique of adopted procedures. Environ. Toxicol. and Chem., 19, 2418–2430.Google Scholar
  356. Numata, M., Nakamura, N., Koshikawa, H. & Terashima, Y. (2002): Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria. Environ. Sci. Technol., 36,20, 4389–3494.Google Scholar
  357. Obermann, P. & Cremer, S. (1992): Entwicklung eines Routinetests zur Elution von Schwermetallen aus Abfallen und belasteten Böden. Abschlußbericht Landesamt für Wasser und Abfall NRW von der Ruhruniversität Bochum.Google Scholar
  358. OECD (2000): Adsorption — Desorption Using a Batch Equilibrium Method. Organisation for Economic Co-operation and Development (OECD). OECD guideline for the testing of chemicals no. 106.Google Scholar
  359. Pelz, O., Chatzinotas, A., Andersen, N., Bernasconi, S. M., Hesse, C., Abraham, W.-R. & Zeyer, J. (2001): Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch. Microbiol., 175, 270–281.Google Scholar
  360. Pleysier, J. & Cremers, A. (1975): Stability of silver-thiourea complexes in montmorillonite clay. Journal of the Chemical Society-Faraday Transactions I, 256–264.Google Scholar
  361. Pleysier, J. & Juo, A. S. R. (1980): A single-extraction method using silver-thiourea for measuring exchangeable cations and effective CEC in soils with variable charges. Soil Sci., 129, 205–211.Google Scholar
  362. Pond, K. L., Huang, Y., Wang, Y. & Kulpa, C. F. (2002): Hydrogen isotopic composition of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination. Environ. Sci. Technol., 36, 724–728.Google Scholar
  363. Providenti, M. A., Lee, H., & Trevors, J. T. (1993): Selected factors limiting the microbial degradation of recalcitrant compounds. J. Ind. Microbiol., 12, 379–395.Google Scholar
  364. Pusch, R. & Yong, R. N. (2006): Micro structure of Smectite Clays and Engineering Performance. Taylor & Francis, London.Google Scholar
  365. Quevauville, P. (1996): Harmonization of leaching/extraction tests for environmental risk assessment. Sci. Tot. Environ. 178, 1–132.Google Scholar
  366. Ramsay, J., Robertson, K., Meylan, S., Luu, Y.-S., Lee, P. & Ramsay, B. (2001): Naphthalene and phenanthrene mineralization coupled to Fe(III)-reduction and mechanisms of accessing insoluble Fe(III), in Natural Attenuation of Environmental Contaminants: Proceedings of the 6th Int. In Situ and On Site Bioremediation Symposium, Leeson, A., Kelley, M. E., Rifai, H. S. & Magar, V. S. (Eds.), vol. 6,2, Battelle Press, Columbus, OH.Google Scholar
  367. Reichert, J.-K. & Roemer, M. (1996): Eluatuntersuchungen. In: Fachgruppe Wasserchemie in der GDCh (Hrsg.), Chemie und Biologie der Altlasten. VCH, Weinheim.Google Scholar
  368. Rettenberger, G & Metzger, H. (1992): Der Deponiegashaushalt in Altablagerungen (Landfill Gas Budget of Abandoned Waste Sites). In: Handbuch Altlasten (Manual for Hazardous Sites). Landesanstalt für Umweltschutz Baden-Württemberg (State Institute of Environmental Protection, Baden Württemberg), Germany.Google Scholar
  369. Rockne, K. I, Chee-Sanford, J. C, Sanford, R. A., Hedlund, B. R., Staley, J. T. & Strand, S. E. (2000): Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol., 66, 4, 1595–1601.Google Scholar
  370. Räling W. F. M. & Van Verseveld H. W. (2002): Natural attenuation: What does the subsurface have in store? Biodegradation, 13, 53–64.Google Scholar
  371. Rump, H.-H. & Scholz, B. (1995): Untersuchung von Abfällen, Reststoffen und Altlasten (Investigation of wastes, residues, and hazardous sites). Wiley-VCH, Weinheim.Google Scholar
  372. Safinowski, M., Griebler, C. & Meckenstock, R. U. (2006): Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ. Sci. Technol., 40,13, 4165–4173.Google Scholar
  373. Sagner, A., Brinkmann, C, Eisenträger, A., Hinger, G., Hollert, H. & Tiehm, A. (2006): Vorkommen und Ökotozität von heterozyklischen Kohlenwasserstoffen (NSOHET). In: Tagungshandbuch des BMBF-Workshops zum KORA Themenverbund 2: “Gaswerke, Kokereien, Teerverarbeitung”: MNA bei der Altlastenbehandlung, Duisburg 12. Juni 2006 und Dresden 19. Juni 2006, 37–41.Google Scholar
  374. Sagner, A. & Tiehm, A. (2005): Enhanced natural attenuation of heterocyclic hydrocarbons: biodegradation under anaerobic conditions and in the presence of H2O2. In: Uhlmann, O. & Annokkée, F. (Eds.): Proceedings (CD) of the 5th international FZK/TNO conference on soil-water systems, 03–07 October, Bordeaux, France, 1629–1636.Google Scholar
  375. Scheidegger, A., Bürgisser, C. S., Borkovec, M., Sticher, H. Meeussen & Van Riemsdikk, W. H. (1994): Convective Transport of acids and bases in porous media. Water Resour. Res., 30, 2937–2944.Google Scholar
  376. Schink, B. (2000): Principles of anaerobic degradation of organic compounds, in Biotechnology, Rehm, H.-J. & Reed, G. (Eds.), vol. 11b Environmental Processes II, Wiley-VCH, Weinheim.Google Scholar
  377. Schmidt, K.R., Stoll, C. & Tiehm, A. (2006a): Evaluation of 16S-PCR detection of Dehalococcoides at two chloroethene-contaminated sites. Water Sci. Technol., in press. Schmidt, K. R., Stoll, C. & Tiehm, A. (2006b): 16S-PCR detection of halorespiring bacteria at two chloroethene-contaminated sites in Germany. In: UFZ Centre for Environmental Research Leipzig-Halle, Book of Abstracts, International Conference on Environmental Biotechnology, 09–14 July, Leipzig, Germany, 233.Google Scholar
  378. Schreiner, M., & Kreysing, K. (1998): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Bd. 4, Geotechnik Hydrogeologie, Springer, Berlin.Google Scholar
  379. Schriever, M. & Hirner, A. (1994): Entwicklung von Routinetests zur Elution von organischen Komponenten aus Abfällen und belasteten Böden. Abschlußbericht Landesamt für Wasser und Abfall NRW von der Universität GH Essen.Google Scholar
  380. Schulz, H.-D. & Källing, M. (1992): Grundlagen und Anwendungsmöglichkeiten hydrogeochemischer Modelle. In: DVWK (Hrsg.): Anwendung hydrogeochemischer Modelle.DVWK-Schriften 100, Parey, Berlin.Google Scholar
  381. Schulze, S. & Tiehm, A. (2004): Assessment of microbial natural attenuation in groundwater polluted with gasworks residues. Water Sci. Technol., 50,5, 347–353.Google Scholar
  382. Schulze, S., Birkle, M., Ebner, R., Barczewski, B. & Tiehm, A. (2003): Natural microbial degradation in a BTEX/PAH polluted groundwater plume. In: Proceedings of ConSoil 2003 (CD), 8th Int. FZK/TNO Conf. Contamin. Soil, 12.-16.05.2003 in Gent, Belgium; Theme C, 2212–2218.Google Scholar
  383. Schumacher, B. A., Neary, A. I, Palmer, C. J. et al. (1995): Laboratory Methods for Soil and Foliar Analysis in Long-Term Environmental Monitoring Programs. EPA/600/R-95/077. U.S. EPA, Las Vegas.Google Scholar
  384. Schumacher, B. A. (2002): Methods for the determination of total organic carbon (TOC) in soil and sediments. United States Environmental Protection Agency, Environmental Sciences Division National, Exposure Research Laboratory Las Vegas, NCEA-C-1282, www.epa.gov/esd/cmb/research/papers/bs116.pdf.Google Scholar
  385. Schuth, C, Taubald, H., Bolano, N. & Maciejczyk, K. (2003): Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. J. Contain. Hydrol., 64,3–4, 269–281.Google Scholar
  386. Schwertman, U. & Murad, E. (1983): Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and clay minerals, 31, 277–284.Google Scholar
  387. Searle, P. L. (1986): The measurement of soil cation exchange properties using the single extraction, silver-thiourea method: An evaluation using a range of New Zealand soils. Australian J. of Soil Res., 24, 193–200.Google Scholar
  388. Seel, F. (1979): Grundlagen der analytischen Chemie unter besonderer Berücksichtigung der Chemie in wäßrigen Systemen. (Basics of analytical chemistry with a particular focus on chemistry of aqueous systems). 7th edn. VCH, Weinheim.Google Scholar
  389. Sherwood Lollar, B., Slater, G. F., Sleep, B., Witt, M., Klecka, G. M., Harkness, M. & Spivack, J. (2001): Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. Environ. Sci. Technol., 35,2, 261–269.Google Scholar
  390. Shimadzu (2006): Shimadzu’s TOC-V Series. www.ssi.shimadzu.com/products/product.cfm?product=visionarytocGoogle Scholar
  391. Sims, R. C. & Overcash, M. R. (1983): Fate of polynuclear aromatic compounds (PNAs) in soil plant systems. Residue Rev., 88, 1–68.Google Scholar
  392. Simunek, J., Sejna, M.. & Van Genuchten, M. T. (1998): The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. US Salinity Laboratory, Agricultural Research Service, US Department of Agriculture, Riverside, CA.Google Scholar
  393. Simunek, J., Van Genuchten, M. T., Sejna, M., Toride, N. & Leij, F. J. (1999): The STANMOD Computer Software for Evaluating Solute Transport in Porous Media Using Analytical Solutions of the Convection-Dispersion Equation, U.S. Salinity Laboratory, USDA/ARS, Riverside, CA.Google Scholar
  394. Singh, H., Läffler, F. E. & Fathepure, B. Z. (2004): Aerobic biodegradation of vinyl chloride by a highly enriched mixed culture. Biodegradation, 15, 197–204.Google Scholar
  395. Slater, G. F., Sherwood Lollar, B., Sleep, B. E. & Edwards, E. A. (2001): Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes: Implications for field applications. Environ. Sci. Technol., 35,5, 901–907.Google Scholar
  396. Small, H. (1989): Ion Chromatography. Plenum Press, New York.Google Scholar
  397. Sähngen, K. (1992): Strategie einer sach-und fachgerechten Entnahme von Grundwasserproben. eretec. Institut für chemische Analytik und Umwelttechnik, Gummersbach, Germany.Google Scholar
  398. Song, D. L., Conrad, M. E., Sorenson, K. E. & Alvarez-Cohen, L. (2002): Stable carbon isotope fractionation during enhanced in situ bioremediation of trichloroethene. Environ. Sci. Technol., 36, 2262–2268.Google Scholar
  399. Stanger, G. (1994): Dictionary of hydrology and water resources. Lochnan, Adelaide.Google Scholar
  400. Steinmann, P. & Shotyk, W. (1996): Sampling anoxic pore waters in peatlands using “peepers” for in-situ filtration. Fresenius’ Journal of Analytical Chemistry, 354, 709–713.Google Scholar
  401. Stieber, M., Haeseler, F., Werner, P. & Frimmel, F. H. (1994): A rapid screening method for micro-organisms degrading polycyclic aromatic hydrocarbons in microplates. Appl. Microbiol. Biotechnol., 4, 753–755.Google Scholar
  402. van Straaten, L. & Hesser, F. (1998): Grundwasserprobennahme. In: Voigt, H.-J. & Wippermann, Th., Geochemie, Bd. 6 des Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Springer, Berlin.Google Scholar
  403. Streck, T., Poletika, N., Jury, W. A. & Farmer, W. J. (1995): Description of simazine transport with rate — limited, two-stage, linear and nonlinear sorption. Water Resources Research, 31, 811–822.Google Scholar
  404. Streck, T. & Richter, J. (1997): Heavy metal displacement in a sandy soil at the field scale: I. Measurements and parameterization of sorption. J. of Environ. Qual., 26, 49–56.Google Scholar
  405. Streck, T. & Richter, J. (1999): Field-scale study of chlortoluron movement in a sandy soil over winter: II. Modeling. J. Environ. Qual., 28, 1824–1831.Google Scholar
  406. Suarez, M. P. & Rifai, H. S. (1999): Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremediation Journal, 3,4, 337–362.Google Scholar
  407. Tadjerpisheh, N. & Ziechmann, W. (1986): Genese und Analyse von Ton-Huminstoff-Komplexen. — Mitt. Dtsch. Bodenkdl. Gesellsch. 45, 155–160.Google Scholar
  408. Takeuchi, M., Nanba, K., Iwamoto, H., Nirei, H., Kusuda, T., Kazaoka, O., Owaki, M. & Furuya, K. (2005): In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Water Res., 39, 2438–2444.Google Scholar
  409. Tessier, A., Campbell, P. G. C. & Bisson, M. (1979): Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 51, 844–851.Google Scholar
  410. Theng, B. K. G. (1974): The chemistry of clay organic reactions. Hilger, London/Wiley, New York.Google Scholar
  411. Theng, B. K. G. (1979): Formation and properties of clay-polymer complexes. Elsevier, Amsterdam.Google Scholar
  412. Tiehm, A. & Schulze, S. (2003): Intrinsic aromatic hydrocarbon biodegradation for groundwater remediation. Oil & Gas Science and Technology — Rev. IFP, 58,4, 449–462.Google Scholar
  413. Tiehm, A., Gozan, M., Müller, A., Schell, H., Lorbeer, H. & Werner, P. (2002a): Sequential anaerobic/aerobic biodegradation of chlorinated hydrocarbons in activated carbon barriers. Water Sci. Technol.: Water Supply, 2,2, 51–58.Google Scholar
  414. Tiehm, A., Schmidt, K. R., Stoll, C, Müller, A., Lohner, S., Heidinger, M., Wickert, F. & Karch, U. (2006a): Assessment of natural microbial dechlorination. Ital. J. of Engin. Geol. and Envir., in press.Google Scholar
  415. Tiehm, A., Schmidt, K., Stoll, C, Müller, A. & Lohner, S. (2005): Natürlicher mikrobieller Abbau (Natural Attenuation) von CKW: Fallbeispiele, Abbaumechanismen und Nachweismethoden. In: Ressourcen-und Grundwasserschutz, Veröffentlichungen aus dem Technologiezentrum Wasser (ISSN 1434–5765), Bd. 28. 53–73.Google Scholar
  416. Tiehm, A., Schmidt, K. R., Martin, H. & Heidinger, M. (2006b): Stable isotope fractionation during PCE halorespiration and aerobic cisDCE and VC biodegradation. In: UFZ Centre for Environmental Research Leipzig-Halle, Book of Abstracts, International Conference on Environmental Biotechnology, 09–14 July, Leipzig, Germany, 408.Google Scholar
  417. Tiehm, A. & Fritzsche, C. (1995): Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl. Microbiol. Biotechnol., 42, 964–968.Google Scholar
  418. Tiehm, A. & Stieber, M. (2001): Strategies to improve PAH bioavailability: Addition of surfactants, ozonation and application of ultrasound. In: Stegmann, R., Brunner, G., Calmano, W. & Matz, G. (Eds.): Treatment of Contaminated Soil, Springer, Berlin.Google Scholar
  419. Tiehm, A., Schulze, S. & Müller, A. (2002b): Handlungsoption „Natural Attenuation“ — Natürlicher Abbau von Schadstoffen im Grundwasser. In: Aktuelle Themen bei der Trinkwassergewinnung, Veröffentlichungen aus dem Technologiezentrum Wasser (ISSN 1434–5765), Bd. 18, 65–78.Google Scholar
  420. Tiehm, A., Stieber, M., Werner, P. & Frimmel, F. H. (1997): Surfactant-enhanced mobilization and biodegradation of polycyclic hydrocarbons in manufactured gas plant soil. Environ. Sci. Technol., 31, 2570–2576.Google Scholar
  421. Tolman, C. F. (1937): Groundwater. McGraw-Hill, New York.Google Scholar
  422. Toride, N., Leij, F. J. & Van Genuchten, M. T. (1995): The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, Version 2.0. Research Report No. 137, U.S. Department of Agriculture, Riverside, CA.Google Scholar
  423. Torstensson, B. A. & Petsonk, A. M. (1988): A hermetically isolated sampling method for groundwater investigations. ASTM American Special Technical Publication 963, 274–289.Google Scholar
  424. Totsche, K. U. (2001): Reaktiver Stofftransport in Böden: Optimierte Experimentdesigns zur Prozeßidentifikation. Bayreuther Bodenkundl. Ber., 75.Google Scholar
  425. Tributh, H. & Lagaly, G. (1986a): Aufbereitung und Identifizierung von Boden-und Lagerstättentonen I. — GIT Fachz. Lab., 6, 524–529.Google Scholar
  426. Tributh, H. & Lagaly, G. (1986b): Aufbereitung und Identifizierung von Boden-und Lagerstättentonen II. — GIT Fachz. Lab., 8, 771–776.Google Scholar
  427. UIT (2000): Druckhaltende Schöpfer. Umwelt-und Ingenieurtechnik GmbH, Dresden, Germany.Google Scholar
  428. Ure, A. M. & Davidson, C. M. (1995): Chemical speciation in the environment. Blackie, London.Google Scholar
  429. USEPA (1994): Terms of environment, glossary, abbreviations, and acronyms. U.S. Environmental Protection Agency EPA 175-B 94-015.Google Scholar
  430. Verce, M. F., Gunsch, C. K., Danko, A. S. & Freedman, D. L. (2002): Cometabolism of cis-l,2-dichloroethene by aerobic cultures grown on vinyl chloride as the primary substrate. Environ. Sci. Technol., 36,10, 2171–2177.Google Scholar
  431. Vinogradov, A. P. (1954): Geochemie seltener und nur in Spuren vorhandener chemischer Elemente in Böden. Akademie Verlag, Berlin.Google Scholar
  432. Voigt, H.-J. & Wippermann, T. (1998): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Bd. 6, Geochemie. Springer, Berlin.Google Scholar
  433. Walker, G. F. (1959): Diffusion of exchangeable cations in vermiculite. Nature, 184, 1392–1393.Google Scholar
  434. Walkley, A. & Black, I. A. (1934): An Examination of Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci., 37, 29–37.Google Scholar
  435. Weiss, J. (1991): Ionenchromatographie. 2. erw. Aufl., VCH, Weinheim.Google Scholar
  436. Welz, B. & Sperling, M. (1997): Atomabsorptionsspektrometrie (Atomic absorption spectrometry). 4th edn. Wiley-VCH, Weinheim.Google Scholar
  437. WHO (1998): International Programme on Chemical Safety (IPCS); Environmental Health Criteria 202: Selected Non-heterocyclic Aromatic Hydro-carbons. World Health Organization. Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  438. Wiedemeier, T. H., Rifai, H. S., Newell, C. J. & Wilson, J. T. (1999): Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. Wiley & Sons, New York.Google Scholar
  439. Williams, I. (2001): Environmental Chemistry: A Modular Approach. Wiley & Sons, New York.Google Scholar
  440. Wilson, W. E. & Moore, J. E. (Eds.) (2001): Glossary of Hydrology. American Geological Institute.Google Scholar
  441. Winkler, A. (1989) Untersuchungen zur Mobilität von Technetium (und Selen) in norddeutschen Grundwasserleitern und Technetium im Kontakt mit natürlich vorkommenden Mineralien., Berliner geowiss. Abh., 117.Google Scholar
  442. van der zee s. e. a. t. m. & van riemsdijk w. h. 1987 transport of reactive solute in spatially variable soil systems. water resources research 2311 2059–2069.Google Scholar
  443. Zeien, H. & Brümmer, G. W. (1991): Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitt. Dt. Bodenk. Ges. 59/1.Google Scholar
  444. Zheng, C. & Bennett, G. D. (1995): Applied contaminant transport modeling: theory and practice. Van Nostrand Reinhold, New York.Google Scholar
  445. Zurmühl, T. (1994): Validierung konvektiv-dispersiver Modelle zur Berechnung des instationären Stofftransports in ungestörten Bodensäulen. Bayreuther Bodenkundliche Berichte 36.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sven Altfelder
    • 1
  • Manfred Birke
    • 2
  • Reiner Dohrmann
    • 1
  • Hagen Hilse
    • 3
  • Florian Jenn
    • 4
  • Stephan Kaufhold
    • 1
  • Klaus Knödel
    • 2
  • Claus Nitsche
    • 5
  • Kathrin R. Schmidt
    • 6
  • Andreas Thiem
    • 7
  • Hans-Jürgen Voigt
    • 4
  1. 1.Bundesanstalt für Geowissenschaften und RohstoffeHannover
  2. 2.Bundesanstalt für Geowissenschaften und Rohstoffe Dienstbereich BerlinBerlin
  3. 3.GICON - Großmann Ingenieur Consult GmbHDresden
  4. 4.Brandenburgische Technische Universität Cottbus LS UmweltgeologieCottbus
  5. 5.Boden- und Grundwasserlabor GmbH (BGD)Dresden
  6. 6.DVGW - Technologiezentrum Wasser (TZW)Karlsruhe
  7. 7.DVGW - Technologiezentrum Wasser (TZW)Karlsruhe

Personalised recommendations