Ground Penetrating Radar

  • Norbert Blindow
  • Dieter Eisenburger
  • Bernhard Illich
  • Hellfried Petzold
  • Thomas Richter


Ground penetrating radar2 (GPR) is an electromagnetic pulse reflection method based on physical principles similar to those of reflection seismics. It is a geophysical technique for shallow investigations with high resolution which has undergone a rapid development during the last two decades (cf. e.g. GPR Conference Proceedings 1994 to 2006). There are several synonyms and acronyms for this method like EMR (electromagnetic reflection), SIR (subsurface interface radar), georadar, subsurface penetrating radar and soil radar. GPR has been used since the 1960s with the term radio echo sounding (RES) for ice thickness measurements on polar ice sheets. The method was first applied by Stern (1929), 1930 in Austria to estimate the thickness of a glacier. GPR has been increasingly accepted for geological, engineering, environmental, and archaeological investigations since the 1980s.


Ground Penetrate Radar Environmental Geology Radar Wave Fresnel Zone Antenna Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further reading

  1. Ahrens, T. J. (Ed.) (1995): A handbook of physical constants. Am. Geophys. Union, Washington, 3 vols.Google Scholar
  2. Annan, A. P., Waller, W. M., Strangway, D. W., Rossiter, J. R., Redman, J. D. & Watts, R. D. (1975): The electromagnetic response of a low loss, 2-layer, dielectric earth for horizontal electric dipole excitation. Geophysics, 40, 285–298.CrossRefGoogle Scholar
  3. Balanis, C. A. (1996): Antenna theory: analysis and design. Wiley.Google Scholar
  4. Baños, A. (1966): Dipole radiation in the presence of a conducting halfspace. Pergamon Press, New York.Google Scholar
  5. Beblo, M. (1982): Elektrische Eigenschaften. In: Angenheister, G. (Ed.): LANDOLT-Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie V, 1b, 254–261, Springer, Berlin.Google Scholar
  6. bleil, u.& petersen, n. (1982): magnetic properties: in landolt-bornstein numerical data and functional relationships in science and technology: group v, geophysics and space research, lb, physical properties of rocks. angenheister, g. (ed.), springer, berlin, 308–432.Google Scholar
  7. Blindow, N. (1986): Bestimmung der Mächtigkeit und des inneren Aufbaus von Schelfeis und temperierten Gletschern mit einem hochauflösenden elektromagnetischen Reflexionsverfahren. Dissertation, Institut für Geophysik, Westfälische Wilhelms-Universität Münster.Google Scholar
  8. Blindow, N., Ergenzinger, P., Pahls, H., Scholz, H. & Thyssen, F. (1987): Continuous profiling of subsurface structures and groundwater surface by EMR methods in Southern Egypt. Berliner Geowiss. Abh. (A) 75.2, 575–627.Google Scholar
  9. Bohidar, R. N. & Hermance, J. F. (2002): The GPR refraction method. Geophysics, 67, 1474–1485.CrossRefGoogle Scholar
  10. Brekovskikh, L. M. (1980): Waves in layered media, 2nd edn. Academic Press, New York.Google Scholar
  11. Brewster, M. L., Annan A. P. & Redman, J. D. (1992): GPR Monitoring of DNAPL migration in a sandy aquifer. In: Fourth international conference on ground penetrating radar. Geological Survey of Finland, Special Paper 16, 185–190.Google Scholar
  12. Brewster, M. L.&Annan, A. P. (1994): Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar. Geophysics, 59, 1211–1221.CrossRefGoogle Scholar
  13. Brewster, M. L., Annan, A. P., Greenhouse, J. P., Kueper, B. H., Olhoeft, G. R., Redman, J. D. & Sander, K. A. (1995): Observed migration of a controlled DNAPL release by geophysical methods: Ground Water. 33, 977–987.Google Scholar
  14. Bristow, C S. & Jol, H. M. (2003): Ground penetrating radar in sediments. Geological Society Publication 211, London.Google Scholar
  15. Cai, J. & Mcmechan, G. A. (1995): Ray-based synthesis of bistatic ground-penetrating radar profiles. Geophysics, 60, 87–96.CrossRefGoogle Scholar
  16. Carcione, J. M. & Seriani, G. (2000): An electromagnetic modelling tool for the detection of hydrocarbons in the subsoil. Geophys. Prosp., 48, 231–256.CrossRefGoogle Scholar
  17. Carmichael, R. S. (Ed.) (1982): Handbook of physical properties of rocks. CC Press, Boca Raton, 3 vols.Google Scholar
  18. Clough, J. W. (1976): Electromagnetic lateral waves observed by earth sounding radars. Geophysics, 41, 1126–1128.Google Scholar
  19. Conyers, L. B. & Goodman, D. (1997): Ground-penetrating radar: an introduction for archaeologists. Altimira.Google Scholar
  20. Daniels, D. J., Gunton, D. J. & Scott, H. F. (1988): Introduction to subsurface radar. IEE Proceedings F, 135(F,4), 278–320.Google Scholar
  21. Daniels, J. J. (1989): Fundamentals of ground penetrating radar. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 89, Golden, Colorado, 62–142.Google Scholar
  22. Daniels, J. J. (1996): Surface Penetrating Radar. The Institution of Electrical Engineers, London.Google Scholar
  23. Daniels, J. J. (2004): Ground Penetrating Radar — 2nd edn. The Institution of Electrical Engineers, London.Google Scholar
  24. Daniels, J. J. (1989): Fundamentals of ground penetrating radar. Proceedings of the Symposium on the Application of Geophysics to Engineering an Environmental Problems, SAGEEP 89, Golden, Colorado, 62–142.Google Scholar
  25. Davis, J. L. & Annan, A. P. (1989): Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prosp., 37, 531–551.CrossRefGoogle Scholar
  26. Doolittle, J. A. (1982): Characterizing soil map units with the ground-penetrating radar. Soil Surv. Horizons, 23,4, 3–10.Google Scholar
  27. Doolittle, J. A. (1983): Investigating Histosols with the ground-penetrating radar. Soil Surv. Horizons, 24,3, 23–28.Google Scholar
  28. Douglas, D. G., Burns, A. A., Rino, Ch. L. & Maresca, J. W. (1992): A study to determine the feasibility of using a ground-penetrating radar for more effective remediation of subsurface contamination. Risk Reduction Engineering Laboratory Office of Research and Development U. S. Environmental Protection Agency, Cincinnati, Ohio, Report EPA/600/R-92/089.Google Scholar
  29. Eisenburger, D., Sender, F. & Thierbach, R. (1993): Borehole Radar-An Efficient Geophysical Tool to Aid in the Planing of Salt caverns and Mines. Seventh Symposium on Salt, I, 279–284, Elsevier, Amsterdam.Google Scholar
  30. Forkmann, B. & Petzold, H. (1989): Prinzip und Anwendung des Gesteinsradars zur Erkundung des Nahbereichs. Freiberger Forschungshefte, C 432, Dt. Verlag für Grundstoffindustrie, Leipzig.Google Scholar
  31. Forkmann, B. & Petzold, H. (1991): Gesteinsradar — Prinzip und Anwendungsmöglichkeiten. Z. angew. Geol., 37, 25–30.Google Scholar
  32. Gevantman, L. H. (Ed.) (1981): Physical properties data for rock salt. National Bureau of Standards Monograph 167.Google Scholar
  33. Goodman, D. (1994): Ground-penetrating radar simulation in engineering and archaeology. Geophysics, 59, 224–232.CrossRefGoogle Scholar
  34. GPR 1994, Proceedings of the Fifth International Conference on Ground Penetrating Radar; 12–16 June, 1994, Kitchener, Ontario Canada.Google Scholar
  35. GPR 1996, Proceedings of the Sixth International Conference on Ground Penetrating Radar; September 30–October 3, 1996, Tohoku Japan.Google Scholar
  36. GPR 1998, Proceedings of the Seventh International Conference on Ground Penetrating Radar; 27–30 May, 1998, Lawrence, Kansas USA.Google Scholar
  37. GPR 2000, Proceedings of the Eighth International Conference on Ground Penetrating Radar; 23–26 May, 2000, Gold Coast, Australia.Google Scholar
  38. GPR 2002, Proceedings of the Ninth International Conference on Ground Penetrating Radar; April 29–May 2, 2002, Santa Barbara, California, USA.Google Scholar
  39. GPR 2004, Proceedings of the Tenth International Conference on Ground Penetrating Radar; 21–24 June, 2004, Delft, The Netherlands.Google Scholar
  40. GPR 2006, Proceedings of the Eleventh International Conference on Ground Penetrating Radar; June 19–22, 2006, Columbus, Ohio, USA.Google Scholar
  41. Greenhouse, J., Brewster, M., Schneider, G., Redmann, D., Annan, P., Olhoeft, G., Lucius, J., Sander, K. & Mazella, A. (1993): Geophysics and solvents: the Borden experiment. The Leading Edge, 261–267.Google Scholar
  42. Halleux, L., Feller, P., Monjoie, A. & Pissart, R. (1992): Ground penetrating and borehole radar surveys in the Borth salt mine (FRG). In: Fourth International Conference on Ground Penetrating Radar. Geological Survey of Finland, Special Paper 16, 317–321.Google Scholar
  43. Halleux, L. & Richter, T. (1994): Radar tomography for shallow engineering geological investigations. Poster presentation on the Fifth International Conference on Ground Penetrating Radar; June 12–16, 1994, Kitchener, Ontario, Canada.Google Scholar
  44. Hansen, V. W. (1989): Numerical solution of antennas in layered media. Wiley.Google Scholar
  45. v. Hippel, A. R. (1954): Dielectrics and waves. M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  46. Huggenberger, P., Meier, E. & Pugin, A. (1994): Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: Advances in data processing and facies analysis. Applied Geophysics, 31, 171–184.CrossRefGoogle Scholar
  47. Iizuka, K., Freundorfer, A. P., Wu, K. H., Mori, H., Ogura, H. & Nguyen, V.-K. (1984): Step-frequency radar. J. Appl. Phys., 56,9, 2572–2583.CrossRefGoogle Scholar
  48. Janschek, H., Mauritsch, H., Räsler, R. & Steinhauser, P. (1985): Hochfrequenzmethoden. In: Militzer, H. & Weber, F. (Eds.): Angewandte Geophysik, 2, Geoelektrik-Geothermik-Radiometrie-Aerogeophysik. Springer Wien, Akademie Berlin, 151–173.Google Scholar
  49. Johari, G. P. & Charette, P. A. (1975): The permittivity and attenuation in polycrystalline and single-crystal ice Ih at 35 and 60 MHz. J. Glac, 14, 293–303.Google Scholar
  50. Jones, F. H. M., Narod, B. B. & Clarke, G. K. C. (1989): Design and operation of a portable impulse radar. J. Glac, 35, 143–147.Google Scholar
  51. King, R. W. P. (1980): Antennas in matter: fundamentals, theory, and applications: M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  52. Kraus, J. D. & Marhefka, R. J. (1988): Antennas, 2nd edn.: McGraw-Hill, New York.Google Scholar
  53. Kraus, J. D. (1991): Electromagnetics, 4th edn.: McGraw-Hill, New York.Google Scholar
  54. Lambot, S. & Goritti, A. (Eds.) (2007): Special Issue on Ground Penetrating Radar. Near Surface Geophysics, 5,1, 5–82.Google Scholar
  55. Lampe, B., Holliger, K. & Green, A. G. (2003): A finite difference time-domain simulation tool for ground-penetrating radar antennas. Geophysics, 68, 971–987.CrossRefGoogle Scholar
  56. Leparoux, D., Gibert, D. & Cote, P. (2001): Adaptation of prestack migration to multioffset ground penetrating radar (GPR) data. Geophys. Prosp., 49, 374–386.CrossRefGoogle Scholar
  57. Lucius, J. E., Olhoeft, G. R., Hill, P. L. & Duke, S. K. (1992): Properties and hazards of 108 selected substances-1992 edn: U.S. Geological Survey Open-File Report 92–527.Google Scholar
  58. Mcmechan, G. A., Loucks, R. G., Mescher, P. & Zeng, X. (2002): Characterization of a coalesced, collapsed paleocave reservoir analog using GPR and well-core data. Geophysics, 67, 1148–1158.CrossRefGoogle Scholar
  59. Mehlhorn, H., Richter, TH. & Band, S. (1988): Beitrag zu theoretischen Aspekten der Anwendung des Radarverfahrens zur Ortung von punktoder flächenartigen Zielen. Neue Bergbautechnik, 18, 176–178.Google Scholar
  60. Meyers, R. A., Smith, D. G., Jol, H. M. & Peterson, C. D. (1996): Evidence for eight great earthquake-subsidence events detected with ground-penetrating radar. Willapa Barrier, Washington. Geology, 24, 99–102.Google Scholar
  61. Militzer, H. & Weber, F. (1987): Angewandte Geophysik, 3, Seismik. Springer, Berlin, Akademie Berlin.Google Scholar
  62. Miller, E. K. (Ed.) (1986): Time-domain measurements in electromagnetics. Van No strand, New York.Google Scholar
  63. Morey, R. M. (1998): Ground penetrating radar for evaluating subsurface conditions for transportation facilities. NAS/NRC/TRB NCHRP Synthesis Report 255.Google Scholar
  64. Mundry, E. (1991): Numerische Modelluntersuchungen zur Reflexion hochfrequenter elektromagnetischer Wellen im Salzgestein. Geol. Jb., E 48, Hannover, 259–282.Google Scholar
  65. Noon, D. A., Longstaff, D. & Yelf, R. J. (1994): Advances in the development of step frequency ground penetrating radar. Proceedings of the Fifth International Conference on Ground Penetrating Radar. Kitchener, Ontario, June 12–16, 117–131.Google Scholar
  66. Olhoeft, G. R. (1988): Interpretation of hole-to-hole radar measurements. In: Proceedings of the Third Technical Symposium on Tunnel Detection, January 12–15, 1988, Golden, CO, 616–629.Google Scholar
  67. Olhoeft, G. R. (1992): Geophysical detection of hydrocarbon and organic chemical contamination. In: Bell, R. S., (Ed.): Proceedings on Application of Geophysics to Engineering, and Environmental Problems, Oakbrook, IL: Society of Engineering and Mining Exploration Geophysics, Golden, CO, 587–595.CrossRefGoogle Scholar
  68. Olhoeft, G. R. & Capron, D. E. (1994): Petrophysical causes of electromagnetic dispersion. Proceedings of the Fifth International Conference on Ground Penetrating Radar. Kitchener, Ontario, June 12–16, 145–152.Google Scholar
  69. Olhoeft, G. R., Powers, M. H. & Capron, D. E. (1994): Buried object detection with ground penetrating radar. In: Proc. of Unexploded Ordnance (UXO) detection and range remediation conference, Golden, CO, May 17–19, 1994, 207–233.Google Scholar
  70. Olhoeft, G. R. (1998): Electrical, magnetic and geometric properties that determine ground penetrating radar performance. In: Proc. of GPR’98, 7th Int’l. Conf. On Ground Penetrating Radar, May 27–30, 1998, The Univ. of Kansas, Lawrence, KS, USA, 177–182.Google Scholar
  71. Olhoeft, G. R. (2000): Maximizing the information return from ground penetrating radar. J. Applied Geophys., 43, 175–187.CrossRefGoogle Scholar
  72. Olhoeft, G. R. (2004): Webpage on Ground Penetrating Radar with a GPR Tutorial, a Bibliography and links to GPR Manufactures.Google Scholar
  73. Pfeiffer, W. (1976): Impulstechnik. Hanser, München.Google Scholar
  74. Pipan, M., Forte, E., Guangyou, F. & Finetti, I. (2003): High resolution imaging and joint characterization in limestone. Near Surface Geophysics, 1, 39–55.Google Scholar
  75. Radezevicius S. J., Chen C. C., Peters L. & Daniels J. J. (2003): Near-field dipole radiation dynamics through FDTD modelling. Journal of Applied Geophysics, 52, 75–91.CrossRefGoogle Scholar
  76. Reynolds, J. M. (1997): An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ltd., Chichester.Google Scholar
  77. Roth, F., Van Genderen, P. & Verhaegen, M. (2004): Radar Scattering Models for the Identification of Buried Low-Metal Content Landmines. Proceedings of the Tenth International Conference on Ground Penetrating Radar; 21–24 June, 2004, Delft, The Netherlands.Google Scholar
  78. Rothammel, K. (1991): Antennenbuch. 10th edn., Franck-Kosmos, Stuttgart.Google Scholar
  79. Skolnik, M. I. (1970): Introduction to radar systems. McGraw-Hill, New York.Google Scholar
  80. Slob, E. & Yarovoy, A. (Eds.) (2006): Special Issue on Ground Penetrating Radar. Near Surface Geophysics, 4,1, 5–75.Google Scholar
  81. Stern, W., (1929): Versuch einer elektrodynamischen Dickenmessung von Gletschereis. Gerl. Beitr. zur Geophysik, 23, 292–333.Google Scholar
  82. Stern, W., (1930): Über Grundlagen, Methodik und bisherige Ergebnisse elektrodynamischer Dickenmessung von Gletschereis. Z. Gletscherkunde, 15, 24–42.Google Scholar
  83. Szerbiak, R. B., Mcmechan, G. A., Corbeanu, R., Forster, C. & Snelgrove, S. H. (2001): 3-D characterization of a clastic reservoir analog: From 3-D GPR data to a 3-D fluid permeability model. Geophysics, 66, 1026–1037.CrossRefGoogle Scholar
  84. Taylor, B. N. (1995): Guide for the use of the international system of units (SI). NIST Spec. Publ. 811, 1995 ed., USGPO, Washington, DC. ( Scholar
  85. Thierbach, R. (1974): Electromagnetic reflections in salt deposits. J. Geophys., 40, 633–637.Google Scholar
  86. Thyssen, F. (1985): Erkundung oberflächennaher Strukturen und Eigenschaften mit dem elektromagnetischen Reflexionsverfahren. In: Heitfeld, K.-H. (Ed.): Ingenieurgeologische Probleme im Grenzbereich zwischen Locker-und Festgesteinen. Springer, Berlin, 597–609.Google Scholar
  87. Tronicke, J., Dietrich, P., Wahlig, U. & Appel, E. (2002): Integrating surface georadar and crosshole radar tomography: A validation experiment in braided stream deposits. Geophysics, 78, 1516–1523.CrossRefGoogle Scholar
  88. Turner, G. & Siggins, A. F. (1994): Constant Q-attenuation of subsurface radar pulses. Geophysics, 59, 1192–1200.CrossRefGoogle Scholar
  89. Tsang, T., Kong, J. A. & Simmons, G. (1973): Interference patterns of a horizontal electric dipole over layered dielectric media. J. Geophys. Res., 78, 3287–3300.CrossRefGoogle Scholar
  90. Tillard, S. (1994): Radar experiments in isotropic and anisotropic geological formations (granite and schists). Geophys. Prosp., 42, 615–636.CrossRefGoogle Scholar
  91. Van Overmeeren, R. A. (1994): Georadar for hydrogeology. First Break, 12, 401–408.Google Scholar
  92. Wright, D. L., Hodge, S. M., Bradley, J. A., Grover, T. P. & Jacobel, R. W. (1990): A digital low-frequency, surface-profiling ice-radar system. J. Glac, 36, 1112–1121.Google Scholar
  93. Wu, T. T. & King, R. W. P. (1965): The cylindrical antenna with nonreflecting resistive loading, IEEE Trans. Antennas and Propagation AP-13, 369–373.CrossRefGoogle Scholar
  94. Wyatt, D. E. & Temples, T. J. (1996): Ground-penetrating radar detection of small-scale channels, joints and faults in the unconsolitated sediments of the atlantic coastal plain. Environmental Geology, 27, 219–225.CrossRefGoogle Scholar
  95. Zeng, X. & Mcmechan, G. A. (1997): GPR characterization of buried tanks and pipes. Geophysics, 62, 797–806.CrossRefGoogle Scholar
  96. Zeng, X., Mcmechan, G. A. & Xu, T. (2000): Synthesis of amplitude-versus-offset variations in ground-penetrating radar data. Geophysics, 65, 113–125.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Norbert Blindow
    • 1
  • Dieter Eisenburger
    • 2
  • Bernhard Illich
    • 3
  • Hellfried Petzold
    • 4
  • Thomas Richter
    • 5
  1. 1.Westfälische Wilhelms-Universität Institut für GeophysikMünster
  2. 2.Bundesanstalt für Geowissenschaften und RohstoffeHannover
  3. 3.GGU Gesellschaft für Geophysikalische UntersuchungenKarlsruhe
  4. 4.LAUBAG Lausitzer Braunkohle AGSenftenberg
  5. 5.Bo-Ra-Tec GmbHWeimar

Personalised recommendations