Advertisement

Pharmaceuticals in the Environment – A Brief Summary

  • K. Kümmerer

Keywords

Sewage Sludge Sewage Treatment Plant Environ Toxicol Aquat Toxicol Veterinary Pharmaceutical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abahussain EA, Ball DE, Matowe WC (2006) Practice and opinion towards disposal of unused medication in Kuwait Med Princ Pract 15:352–357Google Scholar
  2. Aherne GW, Hardcastle A, Nield AH (1990) Cytotoxic drugs and the aquatic environment. Estimation of bleomycin in river and water samples. J Pharm Pharmacol 42:741–742Google Scholar
  3. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfametohoxazole and inhibition of wastewater bacteria. Arch Environ Cont Toxicol 37:158–163CrossRefGoogle Scholar
  4. Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 57:505–512CrossRefGoogle Scholar
  5. Alexy R, Sommer A, Lange FT, Kümmerer K (2006) Local use of antibiotics and their input and fate in a small sewage treatment plant – significance of balancing and analysis on a local scale vs. nationwide scale, Acta Hydrochim Hydrobiol 34:587–592CrossRefGoogle Scholar
  6. Backhaus T, Grimme L H (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38:3291–3301CrossRefGoogle Scholar
  7. Bayerisches Landesamt für Umwelt (2005) Arzneistoffe in der Umwelt. (http://www.lfu.bayern.de/lfu/umweltberat/data/chem/stoff/arznei_2005.pdf)Google Scholar
  8. Bound JP, Voulvoulis N (2005) Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United kingdom. Environ Health Persp 113:1705–1711CrossRefGoogle Scholar
  9. Boxall AB, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28CrossRefGoogle Scholar
  10. Boxall ABA, Kolpin D, Halling Sørensen B, Tolls J (2003a) Are veterinary medicines causing environmental risks. Environ Sci Technol 36:286A–294AGoogle Scholar
  11. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003b) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91Google Scholar
  12. Buerge IJ, Poiger T, Müller MD, Buser HR (2006) Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine. Environ Sci Technol 40:4096–4102CrossRefGoogle Scholar
  13. Cairns J jr, Mount D I (1992) Aquatic toxicology. Envrion Sci Technol 24:154–161CrossRefGoogle Scholar
  14. Christensen FM (1998) Pharmaceuticals in the environment – a human risk? Reg Tox Pharm 28:212–221CrossRefGoogle Scholar
  15. Doerr-MacEwen NA, Haight ME (2006) Expert stakeholders’ views on the management of human pharmaceuticals in the environment. Environ Manag 38:853–866CrossRefGoogle Scholar
  16. Elbaz-Poulichet F, Seidel JL, Othoniel C (2002) Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of southern France. Water Res 36:1102–1105CrossRefGoogle Scholar
  17. Fatta D, Nikolaou A, Achilleos A, Meric S (2007) Analytical methods for tracing pharmaceutical residues in water and wastewater. TRAC 26:515–533Google Scholar
  18. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–59CrossRefGoogle Scholar
  19. Golan DE, Tashjian AH, Armstrong EJ, Armstrong AW (2007) Principles of Pharmacology The Pathophysiologic Basis of Drug Therapy, Kluwer Wolters Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  20. Götz K, Keil F (2007) Medikamentenentsorgung in privaten Haushalten: Ein Faktor bei der Gewaesserbelastung mit Arzneimittelwirkstoffen? UWSF 19:180-188Google Scholar
  21. Golet EM, Alder AC, Giger W (2002) Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ Sci Technol 36:3645–3651CrossRefGoogle Scholar
  22. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365:579–587Google Scholar
  23. Goossens H, Ferech M, Coenen S, Stephens P (2007) European Surveillance of Antimicrobial Consumption Project Group. Comparison of outpatient systemic antibacterial use in 2004 in the United States and 27 European countries. Clin Infect Dis 44:1091–1095CrossRefGoogle Scholar
  24. Greiner P, Rönnefahrt I (2003) Management of environmental risks in the life cycle of pharmaceuticals. European Conference on Human and Veterinary Pharmaceuticals in the Environment. Lyon, April 14–16, 2003Google Scholar
  25. Gröning J, Held C, Garten C, Claussnitzer U, Kaschabek SR, Schlömann M (2007) Transformation of diclofenac by the indigenous microflora of river sediments and identification of a major intermediate. Chemosphere 69:509–516CrossRefGoogle Scholar
  26. Hädrich C (2006) Thesis, University of Freiburg 2006Google Scholar
  27. Hahn T, Schulz R (2007) Indirect effects of antibiotics in the aquatic environment: a laboratory study on detrivore food selection behaviour. Hum Ecol Risk Assess 13: 535–542CrossRefGoogle Scholar
  28. Haiβ A, Kümmerer K (2006) Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge microorganisms. Chemosphere 62:294–302CrossRefGoogle Scholar
  29. Halling-Sørensen B (2000a) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739Google Scholar
  30. Halling-Sørensen B (2000b) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by anti-bacterial agents. Arch Environ Contam Toxicol 40:451–460Google Scholar
  31. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17CrossRefGoogle Scholar
  32. Heberer T, Feldmann D (2005) Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents-modelling versus measurements. J Hazard Mater 122: 211–208. Erratum in: J Hazard Mater 127:249CrossRefGoogle Scholar
  33. Heinzmann B, Schwarz R-J, Pineau C (2006) Getrennte Erfassung von jodorganischen Röntgenkontrastmitteln in Berliner Krankenhäusern und deren Transformation. (Paper presented at the Workshop Getrennte Erfassung von jodorganischen Röntgenkontrastmitteln in Berliner Krankenhäusern und deren Transformation, Berlin)Google Scholar
  34. Hoeger B, Köllner B, Dietrich DR, Hitzfeld B (2007) Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Anal Bioanal Chem 387:1405–1416CrossRefGoogle Scholar
  35. Holm JV, Rugge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the ground water down gradient of a landfill (Grinsted Denmark). Envirn Sci Tech 29:1415–1420CrossRefGoogle Scholar
  36. Holten Lützhøft HC, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1–6CrossRefGoogle Scholar
  37. Meylan WM, Howard PH. (1995) Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci 84:83–92CrossRefGoogle Scholar
  38. Jones-Lepp TL, Stevens R (2007) Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation. Anal Bioanal Chem 387: 1173–1183CrossRefGoogle Scholar
  39. Kreuzig R, Höltge S, Brunotte J, Berenzen N, Wogram J, Schulz R (2005) Test plat studies on runoff of sulfonamides from manured soil after sprinkler irrigation. Environ Toxicol Chem 24:777–781CrossRefGoogle Scholar
  40. Kümmerer K (2001a) Drugs, diagnostic agents and disinfectants in wastewater and water – a review. Chemosphere 45:957–969Google Scholar
  41. Kümmerer K (ed) (2001b) Pharmaceuticals in the environment. Sources, fate, effects and risks, 1st edn. Springer-Verlag, Heidelberg, BerlinGoogle Scholar
  42. Kümmerer K, Al-Ahmad A (1998) The cancer risk for humans related to cyclophoshamide and ifosfamide excretions emitted into surface water via hospital effluents. Cancer Det Prev 22(Suppl 1):136Google Scholar
  43. Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Eur J Clin Microb Inf 9: 1203–1214CrossRefGoogle Scholar
  44. Kümmerer K, Velo G (2006) Ecopharmacology: A new topic of Importance in pharmavigilance. Drug Safety 29:371–373CrossRefGoogle Scholar
  45. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of their genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710CrossRefGoogle Scholar
  46. Kümmerer K, Alexy R, Hüttig J (2004) Standardized tests fail to assess the effects of antibiotics against environmental bacteria because of delayed effects. Water Res 38: 2111–2116CrossRefGoogle Scholar
  47. Kümmerer K, Längin A, Hädrich C, Schuster A (2008a) Flows of active pharmaceutical ingredients due to health care-on a local, regional, and nationwide level in Germany – is hospital effluent treatment an effective approach for risk reduction? SubmittedGoogle Scholar
  48. Kümmerer K, Unger J, Brunswick-Tietze A, Wiethan J, Al-Ahmad A (2008b) Effects of a realistic mixture of antibiotics on resistant and non-resistant sewage sludge bacteria in laboratory-scale sewage treatment plants. SubmittedGoogle Scholar
  49. ter Laak TL, Gebbink WA, Tolls J (2006a) Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environ Toxicol Chem 25:933–941Google Scholar
  50. ter Laak TL, Wouter AG, Tolls J (2006b) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environ Toxicol Chem 25:904–911Google Scholar
  51. Larsson DG, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755CrossRefGoogle Scholar
  52. Li D, Yang M, Hu J, Ren L, Zhang, Y, Chang H, Li K (2008) Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ Toxicol Chem 27:80–86CrossRefGoogle Scholar
  53. Lienert J, Güdel K, Escher BI (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41:4471–4478CrossRefGoogle Scholar
  54. Loraine GA, Pettigrove ME (2006) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ Sci Technol 40:5811–5816CrossRefGoogle Scholar
  55. Lunestad B T, Goksøyr J (1990) Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium. Dis Aquatic Organisms 9:67–72CrossRefGoogle Scholar
  56. Marengo JR, Kok RA, Velagaleti R, Stamm JM (1997) Aerobic degradation of 14C-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16:462–471CrossRefGoogle Scholar
  57. Möller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommer-von Jarmerasted C (2000) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69/70:409–414CrossRefGoogle Scholar
  58. Möller P, Paces T, Dulski P, Morteani G (2002) Anthropogenic Gd in surface water, drainage system, and the water supply of the city of Prague, Czech Republic. Environ Sci Technol 36:2387–2394CrossRefGoogle Scholar
  59. Norpoth K, Nehrkorn A, Kirchner M, Holsen H, Teipel H (1973) Investigations on the problem of solubility and stability of steroid ovulation inhibitors in water, wastewater and activated sludge. Zbl Hyg I. Abt Orig B 156: 500–511Google Scholar
  60. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633CrossRefGoogle Scholar
  61. Ongerth JE, Khan S (2004) Drug residuals: how xenobiotics can affect water supply sources. J AWWWA 96:94–101Google Scholar
  62. Perez S. Barcelo D (2007) Application of advanced MS techniques to analysis and identification of human and microbial metabolites of pharmaceuticals in the aquatic environment. TRAC 26:494–514Google Scholar
  63. Picó Y, Andreu V (2007) Fluoroquinolones in soil – risks and challenges. Anal Bioanal Chem 387:1287–1299CrossRefGoogle Scholar
  64. Pomati F, Orlandi C, Clerici M, Luciani F, Zuccato E (2007) Effects and interactions in an environmentally relevant mixture of pharmaceuticals. Toxicol Sci, 2007 Nov 28; [Epub ahead of print]Google Scholar
  65. Qiting J, Xiheng Z (1988) Combination process of anaerobic digestion and ozonization technology for treating wastewater from antibiotics production. Wat Treat 3:285–291Google Scholar
  66. Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722CrossRefGoogle Scholar
  67. Rahman SZ, Khan RA, Gupta V, Uddin M (2007) Pharamacoenvironmentology – a component of pharmacovigilance. Environ Health 6:1–3CrossRefGoogle Scholar
  68. Ravina M, Campanella L, Kiwi J (2002) Accelerated mineralization of the drug diclofenac via Fenton reactions in a concentric photo-reactor. Water Res 36:3553–3560CrossRefGoogle Scholar
  69. Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37:1–12Google Scholar
  70. Rönnefahrt I (2005) Verbrauchsmengen in der Bewertung des Umweltrisikos von Humanarzneimitteln, In: Umweltbundesamt (Hrsg) Arzneimittel in der Umwelt – Zu Risiken und Nebenwirkungen fragen Sie das Umweltbundesamt. Dessau, UBA texte 29/05Google Scholar
  71. Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in groundwaters – analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. J Chromatogr A 938:199–210CrossRefGoogle Scholar
  72. Sattelberger S (1999) Arzneimittelrückstände in der Umwelt, Bestandsaufnahme und Problemstellung. Report des Umweltbundesamtes Österreich, WienGoogle Scholar
  73. Sarmah,AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) Chemosphere 65:725–759CrossRefGoogle Scholar
  74. Schröder HF (2002) Mass spectrometric monitoring of the degradation and elimination efficiency for hardly eliminable and hardly biodegradable polar compounds by membrane bioreactors. Wat Sci Technol 46:57–64Google Scholar
  75. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150CrossRefGoogle Scholar
  76. Schwarzenbach R, Escher BI, Fenner K, Hofstetter TB, Johnson AC, von Gunten U, Wehrli B (2007) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  77. Seehusen DA, Edwards J (2006) Patient practices and beliefs concerning disposal of medications. J Am Board Fam Med 19:542–547CrossRefGoogle Scholar
  78. Silva E, Rajapakse N, Kortenkamp A(2002) Something from “nothing” – eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756CrossRefGoogle Scholar
  79. Stan H-J, Linkerhägner M (1992) Indentifizierung von 2-(4-Chlorphenoxy)-2-methylpropionsäure im Grundwasser mittels Kapillargaschromatographie mit Atomemissionsdetektion und Massenspektrometrie. Vom Wasser 79:85–88Google Scholar
  80. Swan GE, Cuthbert R, Quevedo M, Green RE, Pain DJ, Bartels P, Cunningham AA, Duncan N, Meharg AA, Oaks JL, Parry-Jones J, Shultz S, Taggart MA, Verdoorn G, Wolter K (2006) Toxicity of diclofenac to Gyps vultures. Biol Lett 2:279–282CrossRefGoogle Scholar
  81. Tabak HH, Bunch RL (1970) Steroid hormones as water pollutants. In: Developments in Industrial Microbiology. Washington, pp 367–376Google Scholar
  82. Taggart MA, Cuthbert R, Das D, Sashikumar C, Pain DJ, Green RE, Feltrer Y, Shultz S, Cunningham AA, Meharg AA (2007) Diclofenac disposition in Indian cow and goat with reference to Gyps vulture population declines. Environ Pollut 147:60–65CrossRefGoogle Scholar
  83. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167CrossRefGoogle Scholar
  84. Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982CrossRefGoogle Scholar
  85. Trautwein C, Metzger J, Kümmerer K (2008) Aerobic biodegradability of the calcium channel antagonist verapamil and identification of the dead-end metabolite 2-(3,4-dimethoxyphenyl)-2isopropyl- 5-(methylamino) pentane nitrile. Chemosphere, in pressGoogle Scholar
  86. Tolls J. (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 37:3397–3406CrossRefGoogle Scholar
  87. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004) Toxic effects of the nonsteroidal anti-inflammatory drug diclofenac. Part II: cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 68:151–166CrossRefGoogle Scholar
  88. Triebskorn R, Casper H, Scheil V, Schwaiger J (2005) Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Aquat Toxicol 75:53–64CrossRefGoogle Scholar
  89. Verbrugh HA, de Neeling AJ (eds) (2003) Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands. SWAB NETHMAP, 2003Google Scholar
  90. Verplanck PL, Taylor HE, Nordstrom DK, Barber LB (2005) Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environ Sci Technol 39:6923–6929CrossRefGoogle Scholar
  91. Wiethan J, Al-Ahmad A, Henninger A, Kümmerer K (2000) Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin und Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser 95:107–118Google Scholar
  92. Zühlke S, Dünnbier U, Heberer Th (2004) Detection and identification of phenazone-type drugs and their microbial metabolites in ground- and drinking water applying solid-phase extraction and gas chromatography with mass spectrometric detection. J Chromatogr A:1050:201–209Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. Kümmerer
    • 1
  1. 1.Department of Environmental Health SciencesUniversity Medical Center FreiburgGermany

Personalised recommendations