Bilingual News Clustering Using Named Entities and Fuzzy Similarity

  • Soto Montalvo
  • Raquel Martínez
  • Arantza Casillas
  • Víctor Fresno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4629)

Abstract

This paper is focused on discovering bilingual news clusters in a comparable corpus. Particularly, we deal with the news representation and with the calculation of the similarity between documents. We use as representative features of the news the cognate named entities they contain. One of our main goals consists of proving whether the use of only named entities is a good source of knowledge for multilingual news clustering. In the vectorial news representation we take into account the category of the named entities. In order to determine the similarity between two documents, we propose a new approach based on a fuzzy system, with a knowledge base that tries to incorporate the human knowledge about the importance of the named entities category in the news. We have compared our approach with a traditional one obtaining better results in a comparable corpus with news in Spanish and English.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atserias, J., Casas, B., Comelles, E., González, M., Padró, L., Padró, M.: FreeLing 1.3. Syntactic and semantic services in an open-source NLP library. In: Proceedings of the LREC’06. Genoa, Italy (2006), http://garraf.epsevg.upc.es/freeling/
  2. 2.
    Braschler, M., Ripplinger, B., Schuble, P.: Experiments with the Eurospider Retrieval System for CLEF 2001. In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 102–110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Chau, R., Yeh, C., Smith, K.A.: A Neural Network Model for Hierarchical Multilingual Text Categorization. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Chen, H., Lin, C.: A Multilingual News Summarizer. In: Proceedings of 18th International Conference on Computational Linguistics, pp. 159–165 (2000)Google Scholar
  5. 5.
    Friburger, N., Maurel, D.: Textual Similarity Based on Proper Names. Mathematical Formal Information Retrieval (MFIR 2002), 155–167 (2002)Google Scholar
  6. 6.
    Gang, W.: Named Entity Recognition and An Apply on Document Clustering. MCSc Thesis. Dalhousie University, Faculty of Computer Science, Canada (2004)Google Scholar
  7. 7.
    García-Vega, M., Martínez-Santiago, F., Urea-López, L.A., Martín-Valdivia, M.T.: Generación de un tesauro de similitud multilinge a partir de un corpus comparable aplicado a CLIR. Procesamiento del Lenguaje Natural, vol. 28 (2002)Google Scholar
  8. 8.
    Gliozzo, A., Strapparava, C.: Cross language Text Categorization by acquiring Multilingual Domain Models from Comparable Corpora. In: Proceedings of the ACL Workshop on Building and Using Parallel Texts, pp. 9–16 (2005)Google Scholar
  9. 9.
    Hansen, B.K.: Analog forecasting of ceiling and visibility using fuzzy sets. In: Proceedings of the AMS 2000 (2000)Google Scholar
  10. 10.
    IPTC - NAA Information Interchange Model Version 4, http://www.iptc.org/std/IIM/4.1/specification/IIMV4.1.pdf
  11. 11.
    Isermann, R.: On Fuzzy Logic Applications for Automatic Control Supervision and Fault Diagnosis. IEEE Trans. Syst. Man and Cybern. 28, 221–235 (1998)CrossRefGoogle Scholar
  12. 12.
    Karypis, G.: CLUTO: A Clustering Toolkit. Technical Report: 02-017. University of Minnesota, Department of Computer Science, Minneapolis, MN 55455 (2002)Google Scholar
  13. 13.
    Lawrence, J.L.: Newsblaster Russian-English Clustering Performance Analysis. Columbia computer science Technical Reports, http://www1.cs.columbia.edu/library/2003.html
  14. 14.
    Mathieu, B., Besancon, R., Fluhr, C.: Multilingual document clusters discovery. RIAO 2004, pp. 1–10 (2004)Google Scholar
  15. 15.
    Montalvo, S., Martínez, R., Casillas, A., Fresno, V.: Multilingual Document Clustering: an Heuristic Approach Based on Cognate Named Entities. In: Proceedings of COLING-ACL 2006, pp. 1145–1152 (2006)Google Scholar
  16. 16.
  17. 17.
    Pouliquen, B., Steinberger, R., Ignat, C., Ksper, E., Temikova, I.: Multilingual and cross-lingual news topic tracking. In: Proc. of the CoLing 2004, pp. 23–27 (2004)Google Scholar
  18. 18.
    Rauber, A., Dittenbach, M., Merkl, D.: Towards Automatic Content-Based Organization of Multilingual Digital Libraries: An English, French, and German View of the Russian Information Agency Novosti News. In: Proceedings of RCDL 2001 (2001)Google Scholar
  19. 19.
    Silva, J., Mexia, J., Coelho, C., Lopes, G.: A Statistical Approach for Multilingual Document Clustering and Topic Extraction form Clusters. Pliska Studia Mathematica Bulgarica 16, 207–228 (2004)MathSciNetGoogle Scholar
  20. 20.
    Steinberger, R., Pouliquen, B., Ignat, C.: Exploting multilingual nomenclatures and language-independent text features as an interlingua for cross-lingual text analysis applications. In: SILTC (2004)Google Scholar
  21. 21.
    Steinberger, R., Pouliquen, B., Scheer, J.: Cross-Lingual Document Similarity Calculation Using the Multilingual Thesaurus EUROVOC. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    van Rijsbergen, C.J.: Foundations of evaluation. Journal of Documentation 30, 365–373 (1974)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Soto Montalvo
    • 1
  • Raquel Martínez
    • 2
  • Arantza Casillas
    • 3
  • Víctor Fresno
    • 2
  1. 1.GAVAB Group, URJC 
  2. 2.NLP&IR Group, UNED 
  3. 3.Dpt. Electricidad y Electrónica, UPV-EHU 

Personalised recommendations