Feature Engineering in Maximum Spanning Tree Dependency Parser

  • Václav Novák
  • Zdeněk Žabokrtský
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4629)


In this paper we present the results of our experiments with modifications of the feature set used in the Czech mutation of the Maximum Spanning Tree parser. First we show how new feature templates improve the parsing accuracy and second we decrease the dimensionality of the feature space to make the parsing process more effective without sacrificing accuracy.


Feature Space Maximum Span Average Sentence Human Language Technology Dependency Parser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buchholz, S., Marsi, E.: CoNLL-X Shared Task on Multilingual Dependency Parsing. In: Màrquez, L., Klein, D. (eds.) Proceedings of CoNLL-X, New York City, USA (2006)Google Scholar
  2. 2.
    Hajič, J. et al.: Prague Dependency Treebank 2.0. CD-ROM, Linguistic Data Consortium, LDC Catalog No.: LDC2006T01, Philadelphia (2006)Google Scholar
  3. 3.
    McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: HLT 2005: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, British Columbia, Canada, Association for Computational Linguistics, pp. 523–530 (2005)Google Scholar
  4. 4.
    Nivre, J., Hall, J., Nilsson, J.: Memory-Based Dependency Parsing. In: Ng, H.T., Riloff, E. (eds.) Proceedings of the Eighth Conference on Computational Natural Language Learning (CoNLL), Boston, Massachusetts, USA, pp. 49–56 (2004)Google Scholar
  5. 5.
    Collins, M., Hajič, J., Ramshaw, L., Tillmann, C.: A statistical parser for Czech. In: Proceedings of the 37th Annual Meeting of the ACL, College Park, MD, USA, Association for Computational Linguistics (1999)Google Scholar
  6. 6.
    Holan, T., Žabokrtský, Z.: Combining Czech Dependency Parsers. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 95–102. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hana, J., Zeman, D., Hajič, J., Hanová, H., Hladká, B., Jeřá, E.: Manual for Morphological Annotation, Revision for the Prague Dependency Treebank 2.0. Technical Report TR-2005-27, ÚFAL MFF UK, Prague, Czech Rep. (2005)Google Scholar
  8. 8.
    Malouf, R., van Noord, G.: Wide coverage parsing with stochastic attribute value grammars. In: Su, K.-Y., Tsujii, J., Lee, J.-H., Kwong, O.Y. (eds.) IJCNLP 2004. LNCS (LNAI), vol. 3248, Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Václav Novák
    • 1
  • Zdeněk Žabokrtský
    • 1
  1. 1.Institute of Formal and Applied Linguistics, Charles University, Malostranské nám. 25, CZ-11800 PragueCzech Republic

Personalised recommendations