Hierarchical and Modular Reasoning in Complex Theories: The Case of Local Theory Extensions

  • Viorica Sofronie-Stokkermans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)

Abstract

We present an overview of results on hierarchical and modular reasoning in complex theories. We show that for a special type of extensions of a base theory, which we call local, hierarchic reasoning is possible (i.e. proof tasks in the extension can be hierarchically reduced to proof tasks w.r.t. the base theory). Many theories important for computer science or mathematics fall into this class (typical examples are theories of data structures, theories of free or monotone functions, but also functions occurring in mathematical analysis). In fact, it is often necessary to consider complex extensions, in which various types of functions or data structures need to be taken into account at the same time. We show how such local theory extensions can be identified and under which conditions locality is preserved when combining theories, and we investigate possibilities of efficient modular reasoning in such theory combinations.

We present several examples of application domains where local theories and local theory extensions occur in a natural way. We show, in particular, that various phenomena analyzed in the verification literature can be explained in a unified way using the notion of locality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armando, A., Bonacina, M.P., Ranise, S.: On a rewriting approach to satisfiability procedures: extension, combination of theories and an experimental appraisal. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 65–80. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Information and Computation 183(2), 140–164 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baader, F., Tinelli, C.: Deciding the word problem in the union of equational theories sharing constructors. Information and Computation 178(2), 346–390 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered resolution. Journal of the ACM 48(1), 70–109 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Basin, D.A., Ganzinger, H.: Complexity analysis based on ordered resolution. In: Proc. 11th IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 456–465. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  6. 6.
    Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Burmeister, P.: A Model Theoretic Oriented Approach to Partial Algebras: Introduction to Theory and Application of Partial Algebras, Part I. In: Mathematical Research, vol. 31, Akademie-Verlag, Berlin (1986)Google Scholar
  8. 8.
    Burris, S.: Polynomial time uniform word problems. Mathematical Logic Quarterly 41, 173–182 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957)MATHMathSciNetGoogle Scholar
  10. 10.
    Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J. Logic Programming 1(3), 267–284 (1984)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Evans, T.: The word problem for abstract algebras. J. London Math. Soc. 26, 64–71 (1951)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time decidability of uniform word problems. In: Proc. 16th IEEE Symposium on Logic in Computer Science (LICS 2001), pp. 81–92. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  14. 14.
    Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions with Evans equality. Information and Computation 204(10), 1453–1492 (2006)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-4), 221–249 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satisfiability and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE 2007, LNCS, vol. 4603, Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Givan, R., McAllester, D.: New results on local inference relations. In: Principles of Knowledge Representation and reasoning. Proceedings of the Third International Conference (KR 1992), pp. 403–412. Morgan Kaufmann Press, San Francisco (1992)Google Scholar
  18. 18.
    Givan, R., McAllester, D.A.: Polynomial-time computation via local inference relations. ACM Transactions on Computational Logic 3(4), 521–541 (2002)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Locality and data structures. Work in progress (2007)Google Scholar
  20. 20.
    Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchical reasoning in the verification of complex systems. Electronic Notes in Theoretical Computer Science 174(8), 39–54 (2007)CrossRefGoogle Scholar
  21. 21.
    McAllester, D.: Automatic recognition of tractability in inference relations. Journal of the ACM 40(2), 284–303 (1993)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1), 101–121 (2005)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems (1979)Google Scholar
  25. 25.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen. Skrifter utgit av Videnskabsselskapet i Kristiania, I. Matematisk-naturvidenskabelig klasse. vol. 4, pp. 1–36 (1920)Google Scholar
  27. 27.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Sofronie-Stokkermans, V.: On combinations of local theory extensions (submitted for publication) (2006)Google Scholar
  30. 30.
    Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local extensions of ordered structures. In: Proceedings of ISMVL-2007, IEEE Computer Society, Los Alamitos (2007), http://dx.doi.org/10.1109/ISMVL.2007.10 Google Scholar
  31. 31.
    Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tinelli, C., Zarba, C.: Combining nonstably infinite theories. Journal of Automated Reasoning 34(3), 209–238 (2005)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Ullman, J.: Principles of Database and Knowledge-Base Systems. Computer Science Press (1988)Google Scholar
  34. 34.
    Ullman, J.: Bottom-up beats top-down for datalog. In: Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on the Principles of Database Systems, pp. 140–149 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Viorica Sofronie-Stokkermans
    • 1
  1. 1.Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, SaarbrückenGermany

Personalised recommendations