Visibly Pushdown Languages and Term Rewriting

  • Jacques Chabin
  • Pierre Réty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)

Abstract

To combine tree languages with term rewriting, we introduce a new class of tree languages, that both extends regular languages and restricts context-free languages, and that is closed under intersection (unlike context-free languages). To do it, we combine the concept of visibly pushdown language, with top-down pushdown tree automata, and we get the visibly pushdown tree automata. Then, we use them to express the sets of descendants for a sub-class of growing term rewrite systems, and thanks to closure under intersection, we get that joinability and (restricted) unifiability are decidable.

Keywords

tree languages term rewriting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of Nested Trees. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly Pushdown Languages. In: Proc. 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 202–211. ACM Press, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (TATA), http://www.grappa.univ-lille3.fr/tata
  4. 4.
    Genet, T., Klay, F.: Rewriting for cryptographic protocol verification. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Gouranton, V., Réty, P., Seidl, H.: Synchronized Tree Languages Revisited and New Applications. In: Honsell, F., Miculan, M. (eds.) ETAPS 2001 and FOSSACS 2001. LNCS, vol. 2030, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Guessarian, I.: Pushdown Tree Automata. Mathematical Systems Theory 4(16), 237–263 (1983)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hermann, M., Galbavý, R.: Unification of Infinite Sets of Terms Schematized by Primal Grammars. Theoretical Computer Science, 176 (1997)Google Scholar
  8. 8.
    Jacquemard, F.: Decidable approximations of term rewrite systems. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 362–376. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Limet, S., Réty, P.: A New Result about the Decidability of the Existential One-Step Rewriting Theory. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Limet, S., Salzer, G.: Proving properties of term rewrite systems via logic programs. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 170–184. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Limet, S., Salzer, G.: Manipulating tree tuple languages by transforming logic programs. In: Dahn, I., Vigneron, L. (eds.) Electronic Notes in Theoretical Computer Science, vol. 86, Elsevier, Amsterdam (2003)Google Scholar
  12. 12.
    Lugiez, D., Schnoebelen, P.: The Regular Viewpoint on PA-Processes. Theoretical Computer Science (2000)Google Scholar
  13. 13.
    Nagaya, T., Toyama, Y.: Decidability for Left-Linear Growing Term Rewriting Systems. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Raoult, J.C.: Rational Tree Relations. Bulletin of the Belgian Mathematical Society Simon Stevin 4, 149–176 (1997)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jacques Chabin
    • 1
  • Pierre Réty
    • 1
  1. 1.LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2France

Personalised recommendations