Combining Proof-Producing Decision Procedures

  • Silvio Ranise
  • Christophe Ringeissen
  • Duc-Khanh Tran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)

Abstract

Constraint solvers are key modules in many systems with reasoning capabilities (e.g., automated theorem provers). To incorporate constraint solvers in such systems, the capability of producing conflict sets or explanations of their results is crucial. For expressiveness, constraints are usually built out in unions of theories and constraint solvers in such unions are obtained by modularly combining solvers for the component theories. In this paper, we consider the problem of modularly constructing conflict sets for a combined theory by re-using available proof-producing procedures for the component theories. The key idea of our solution to this problem is the concept of explanation graph, which is a labelled, acyclic and undirected graph capable of recording the entailment of some equalities. Explanation graphs allow us to record explanations computed by a proof-producing procedure and to refine the Nelson-Oppen combination method to modularly build conflict sets for disjoint unions of theories. We also study how the computed conflict sets relate to an appropriate notion of minimality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boudet, A.: Combining unification algorithms. Journal of Symbolic Computation 16(6), 597–626 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Ranise, S., Sebastiani, R.: Efficient Theory Combination via Boolean Search. J. of Information and Computation 10(204), 1411–1596 (2006)Google Scholar
  3. 3.
    Burg, J., Lang, S.-D., Hughes, C.E.: Intelligent Backtracking in CLP(R). Ann. Math. Artif. Intell. 17(3-4), 189–211 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    de Moura, L., Rueß, H., Shankar, N.: Justifying Equality. In: Proc. of the Workshop on Pragmatics of Decision Procedures for Automated Reasoning (PDPAR 2004), Also in ENTCS, vol. 125(3) (2004)Google Scholar
  5. 5.
    Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM 27(4), 758–771 (1980)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, San Diego (1972)MATHGoogle Scholar
  7. 7.
    Fontaine, P.: Techniques for Verification of Concurrent Systems with Invariants. PhD thesis, Université de Liège (2004)Google Scholar
  8. 8.
    Fontaine, P., Marion, J.-Y., Merz, S., Prensa Nieto, L., Tiu, A.F.: Expressiveness + Automation + Soundness: Towards Combining SMT Solvers and Interactive Proof Assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: Automatic Combinability of Rewriting-Based Satisfiability Procedures. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 542–556. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)MATHCrossRefGoogle Scholar
  11. 11.
    Nieuwenhuis, R., Oliveras, A.: Proof-Producing Congruence Closure. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Nipkow, T.: Combining matching algorithms: The regular case. Journal of Symbolic Computation 12, 633–653 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ranise, S., Ringeissen, C., Tran, D.-K.: Nelson-Oppen, Shostak and the Extended Canonizer: A Family Picture with a Newborn. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Ranise, S., Tinelli, C.: Satisfiability Modulo Theories. IEEE Magazine on Intelligent Systems 21(6), 71–81 (2006)Google Scholar
  15. 15.
    Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Chichester (1986)MATHGoogle Scholar
  16. 16.
    Schulz, S.: E – a brainiac theorem prover. AI Communications (2002)Google Scholar
  17. 17.
    Stump, A., Tang, L.-Y.: The Algebra of Equality Proofs. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 469–483. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. of the ACM 22(2), 215–225 (1975)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tran, D.-K.: Conception de Procédures de Décision par Combinaison et Saturation. PhD thesis, Université Henri Poincaré, Nancy, France, Ch. 8 (in english) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Silvio Ranise
    • 1
  • Christophe Ringeissen
    • 1
  • Duc-Khanh Tran
    • 1
  1. 1.LORIA & INRIA-Lorraine 

Personalised recommendations