Advertisement

Certification of Automated Termination Proofs

  • Evelyne Contejean
  • Pierre Courtieu
  • Julien Forest
  • Olivier Pons
  • Xavier Urbain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)

Abstract

Nowadays, formal methods rely on tools of different kinds: proof assistants with which the user interacts to discover a proof step by step; and fully automated tools which make use of (intricate) decision procedures. But while some proof assistants can check the soundness of a proof, they lack automation. Regarding automated tools, one still has to be satisfied with their answers Yes/No/Do not know, the validity of which can be subject to question, in particular because of the increasing size and complexity of these tools.

In the context of rewriting techniques, we aim at bridging the gap between proof assistants that yield formal guarantees of reliability and highly automated tools one has to trust. We present an approach making use of both shallow and deep embeddings. We illustrate this approach with a prototype based on the CiME rewriting toolbox, which can discover involved termination proofs that can be certified by the Coq proof assistant, using the Coccinelle library for rewriting.

Keywords

Module Type Automate Tool Proof Assistant Graph Criterion Strongly Connect Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Bezem, M., Hendriks, D., de Nivelle, H.: Automated proof construction in type theory using resolution. J. Autom. Reasoning 29(3-4), 253–275 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Blanqui, F., Coupet-Grimal, S., Delobel, W., Hinderer, S., Koprowski, A.: Color, a coq library on rewriting and termination. In: Geser and Sondergaard [16]Google Scholar
  5. 5.
    Contejean, E.: A certified AC matching algorithm. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)Google Scholar
  6. 6.
  7. 7.
    Contejean, E., Corbineau, P.: Reflecting proofs in first-order logic with equality. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 7–22. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Contejean, E., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with cime. In: Rubio [27], pp. 71–73, http://cime.lri.fr
  9. 9.
    Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG-88. LNCS, vol. 417, Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3(1), 69–115 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dershowitz, N.: Termination Dependencies. In: Rubio [27] Technical Report DSIC II/15/03, Univ. Politécnica de Valencia, SpainGoogle Scholar
  13. 13.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)Google Scholar
  14. 14.
    Doligez, D.: Zenon. http://focal.inria.fr/zenon/
  15. 15.
    Endrullis, J.: Jambox, http://joerg.endrullis.de/index.html.
  16. 16.
    Geser, A., Sondergaard, H. (eds.).: Extended Abstracts of the 8th International Workshop on Termination, WST 2006 (August 2006)Google Scholar
  17. 17.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 32–46. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Hubert, T.: Certification des preuves de terminaison en Coq. Rapport de DEA, Université Paris 7, In French (September 2004)Google Scholar
  22. 22.
    Koprowski, A.: TPA, http://www.win.tue.nl/tpa
  23. 23.
    Lankford, D.S.: Onproving term rewriting systems are Noetherian.Technical Report MTP-3, Mathematics Department, Louisiana Tech. Univ., (1979) Available at http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
  24. 24.
    Marché, C., Zantema, H.: The termination competition 2006. In Geser and Sondergaard [16], http://www.lri.fr/~marche/termination-competition/
  25. 25.
    Nguyen, Q.H., Kirchner, C., Kirchner, H.: External rewriting for skeptical proof assistants. J. Autom. Reasoning 29(3-4), 309–336 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. In: Nipkow, T., Paulson, L.C., Wenzel, M. (eds.) Isabelle/HOL. LNCS, vol. 2283, Springer, Heidelberg (2002)Google Scholar
  27. 27.
    Rubio, A., (ed.).: Extended Abstracts of the 6th International Workshop on Termination, WST 2003, Technical Report DSIC II/15/03, Univ. Politécnica de Valencia, Spain (June 2003)Google Scholar
  28. 28.
    The Coq Development Team. The Coq Proof Assistant Documentation – Version V8.1 (February 2007), http://coq.inria.fr.
  29. 29.
    Urbain, X.: Modular and incremental automated termination proofs. Journal of Automated Reasoning 32, 315–355 (2004)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Evelyne Contejean
    • 1
  • Pierre Courtieu
    • 2
  • Julien Forest
    • 2
  • Olivier Pons
    • 2
  • Xavier Urbain
    • 2
  1. 1.LRI, Université Paris-Sud, CNRS, INRIA Futurs, Orsay F-91405 
  2. 2.Cédric – Conservatoire national des arts et métiers 

Personalised recommendations