Perfect Block Ciphers with Small Blocks

  • Louis Granboulan
  • Thomas Pornin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4593)


Existing symmetric encryption algorithms target messages consisting of elementary binary blocks of at least 64 bits. Some applications need a block cipher which operates over smaller and possibly non-binary blocks, which can be viewed as a pseudo-random permutation of n elements. We present an algorithm for selecting such a random permutation of n elements and evaluating efficiently the permutation and its inverse over arbitrary inputs. We use an underlying deterministic RNG (random number generator). Each evaluation of the permutation uses O(logn) space and O((logn)3) RNG invocations. The selection process is “perfect”: the permutation is uniformly selected among the n! possibilities.


Binary Tree Random Permutation Small Block Block Cipher Array Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Advanced Encryption Standard, National Institute of Standards and Technology (NIST), FIPS 197 (2001)Google Scholar
  2. 2.
    Data Encryption Standard, National Institute of Standards and Technology (NIST), FIPS 46(3) (1999)Google Scholar
  3. 3.
    How to construct pseudo-random permutations from pseudo-random functions. In: Luby, M., Rackoff, C.(eds.) Lecture Notes in Computer Science, Proceedings of Crypto 1985 (1985)Google Scholar
  4. 4.
    Baignères, T., Finiasz, M.: Dial C for Cipher. Proceedings of SAC 2006, LNCS, vol. 4356, Springer, Heidelberg (to appear, 2007)Google Scholar
  5. 5.
    Baignères, T., Finiasz, M.: KFC - the Krazy Feistel Cipher. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 380–395. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Pseudo random Permutation Families over Abelian Groups. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 15–17. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Ciphers with Arbitrary Finite Domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Statistical Tables, Fisher, R.A., Yates, F. London, example 12 (1938)Google Scholar
  9. 9.
    CACM. Durstenfeld, R.: 7, p.420 (1964)Google Scholar
  10. 10.
    The Art of Computer Programming, Knuth, D.: vol. 2, 3rd edn. p. 145 (1997)Google Scholar
  11. 11.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudorandom number generator. SIAM Journal on Computing 15, 364–383 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 109–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Fast Generation of Random Permutations via Networks Simulation. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 246–260. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    The MPFR Library,

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Louis Granboulan
    • 1
  • Thomas Pornin
    • 2
  1. 1.École Normale Supérieure; EADS 
  2. 2.Cryptolog International, ParisFrance

Personalised recommendations