The 128-Bit Blockcipher CLEFIA (Extended Abstract)

  • Taizo Shirai
  • Kyoji Shibutani
  • Toru Akishita
  • Shiho Moriai
  • Tetsu Iwata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4593)


We propose a new 128-bit blockcipher CLEFIA supporting key lengths of 128, 192 and 256 bits, which is compatible with AES. CLEFIA achieves enough immunity against known attacks and flexibility for efficient implementation in both hardware and software by adopting several novel and state-of-the-art design techniques. CLEFIA achieves a good performance profile both in hardware and software. In hardware using a 0.09 μm CMOS ASIC library, about 1.60 Gbps with less than 6 Kgates, and in software, about 13 cycles/byte, 1.48 Gbps on 2.4 GHz AMD Athlon 64 is achieved. CLEFIA is a highly efficient blockcipher, especially in hardware.


blockcipher generalized Feistel structure DSM CLEFIA 


  1. 1.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple platforms. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 41–54. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barreto, P.S.L.M., Rijmen, V.: The Anubis block cipher. NESSIE, September 2000 (primitive submitted), Available at
  3. 3.
    Biham, E.: New types of cryptanalytic attacks using related keys. Journal of Cryptology 7(4), 229–246 (1994)zbMATHCrossRefGoogle Scholar
  4. 4.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 21–33. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  8. 8.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography). Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Data Encryption Standard: Federal Information Processing Standard (FIPS), Publication 46, National Bureau of Standards, U.S. Department of Commerce, Washington, DC (January 1977)Google Scholar
  12. 12.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: Hight: A new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Junod, P., Vaudenay, S.: FOX: A new family of block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible differential cryptanalysis for block cipher structure. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)Google Scholar
  16. 16.
    Lim, C., Khoo, K.: An Analysis of XSL Applied to BES. In: Pre-proceedings of Fast Software Encryption 2007, FSE 2007, pp. 253–265 (2007)Google Scholar
  17. 17.
    Matsui, M.: Linear cryptanalysis of the data encryption standard. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Matsui, M.: How far can we go on the x64 processors? In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Murphy, S., Robshaw, M.: Comments on the security of the AES and the XSL technique. Electronic Letters 39(1), 36–38 (2003)CrossRefGoogle Scholar
  21. 21.
    Satoh, A., Morioka, S.: Hardware-focused performance comparison for the standard block ciphers AES, Camellia, and Triple-DES. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 252–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Shirai, T., Preneel, B.: On Feistel ciphers using optimal diffusion mappings across multiple rounds. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 1–15. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Shirai, T., Shibutani, K.: On Feistel structures using a diffusion switching mechanism. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 41–56. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers provably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Taizo Shirai
    • 1
  • Kyoji Shibutani
    • 1
  • Toru Akishita
    • 1
  • Shiho Moriai
    • 1
  • Tetsu Iwata
    • 2
  1. 1.Sony Corporation, 1-7-1 Konan, Minato-ku, Tokyo 108-0075Japan
  2. 2.Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603Japan

Personalised recommendations