Spatial-Yap: A Logic-Based Geographic Information System

  • David Vaz
  • Michel Ferreira
  • Ricardo Lopes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4670)


Coupled deductive database systems join together logic programming systems and relational database management systems, in order to combine the best of both worlds. The current state-of-the-art of these interfaces is restricted to access extensional data in databases in Datalog form, disallowing access to compound terms. However, recent years have seen the evolution of relational database management systems in order to enable them to store and manage more complex information. Of this complex data, one of the most interesting and fast growing is that of spatial data. In this paper we describe the application of the MYDDAS deductive database system to the handling of spatial data, and the needed extensions, namely the ability to handle vectorial geometric attributes from database relations, the definition of spatial operators, and a visualization framework, in order to obtain a spatial deductive database system, that can be used as a geographic information system. We argue that such a system can improve the state-of-the-art of spatial data handling in all of its aspects, namely in spatial data modeling, spatial querying and spatial data mining. We describe, in particular, the application of such a logic-powered geographic information system to two real-world problems.


Spatial Data Spatial Database Inductive Logic Programming Logic Query Spatial Term 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Correas, J., Gomez, J., Carro, M., Cabeza, D., Hermenegildo, M.: A Generic Persistence Model for (C)LP Systems (and Two Useful Implementations). In: Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 104–119. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database Engine. In: ACM SIGMOD International Conference on the Management of Data, pp. 442–453. ACM Press, New York (1994)CrossRefGoogle Scholar
  3. 3.
    Soares, T., Ferreira, M., Rocha, R.: The MYDDAS Programmer’s Manual. Technical Report DCC-2005-10, Department of Computer Science, University of Porto (2005)Google Scholar
  4. 4.
    Vaghani, J., Ramamohanarao, K., Kemp, D., Somogyi, Z., Stuckey, P., Leask, T., Harland, J.: The Aditi Deductive Database System. Technical Report 93/10, School of Information Technology and Electrical Engineering, Univ. of Melbourne (1993)Google Scholar
  5. 5.
    Morik, K.: Knowledge Discovery in Databases - an Inductive Logic Programming Approach. In: Foundations of Computer Science: Potential - Theory - Cognition, pp. 429–436. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Ferreira, M., Fonseca, N.A., Rocha, R., Soares, T.: Efficient and Scalable Induction of Logic Programs using a Deductive Database System. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) Proceedings of the 16th International Conference on Inductive Logic Programming, ILP 2006, Santiago de Compostela, Spain, August 2006. LNCS (LNAI), vol. 4455, Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Draxler, C.: Accessing Relational and Higher Databases Through Database Set Predicates. PhD thesis, Zurich University (1991)Google Scholar
  8. 8.
    Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. J. Comput. Syst. Sci. 51(1), 26–52 (1995)CrossRefGoogle Scholar
  9. 9.
    Paredaens, J., den Bussche, J.V., Gucht, D.V.: Towards a theory of spatial database queries (extended abstract). In: PODS 1994: Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, Minneapolis, Minnesota, United States, pp. 279–288. ACM Press, New York (1994)CrossRefGoogle Scholar
  10. 10.
    Kuijpers, B., Paredaens, J., Smits, M., den Bussche, J.V.: Termination properties of spatial datalog programs. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS, vol. 1154, pp. 101–116. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to Support Parallelism. In: Conference on Tabulation in Parsing and Deduction, pp. 77–87 (2000)Google Scholar
  12. 12.
    Ferreira, M.: The MYDDAS Project: Using a Deductive Database for Traffic Characterization. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 424–426. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Open GIS Consortium, I.: OpenGIS Simple Features Specifications For SQL (1999), Available from
  14. 14.
    Ravada, S., Sharma, J.: Oracle8i spatial: Experiences with extensible databases. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 355–359. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    The Postgis Development Team: (Postgis adds support for geographic objects to the postgresql object-relational database.), Available from
  16. 16.
    Soares, T., Rocha, R., Ferreira, M.: Generic Cut Actions for External Prolog Predicates. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 16–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Anjewierden, A., Wielemaker, J.: (Xpce: the swi-prolog native gui library), Available from
  18. 18.
    Shreiner, D.: OpenGL(R) 1.4 Reference Manual, 4th edn. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA (2004)Google Scholar
  19. 19.
    Hargreaves, S.: (Allegro: A game programming library), Available from
  20. 20.
    The GEOS Development Team: (GEOS: Geometry Engine Open Source), Available from
  21. 21.
    The PostgreSQL Development Team: Postgresql user’s guide (2006), Available from
  22. 22.
    Fonseca, N.A., Silva, F., Camacho, R.: April - An Inductive Logic Programming System. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 481–484. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Griffith, D.A.: Statistical and mathematical sources of regional science theory: Map pattern analysis as an example. Papers in Regional Science 78(1), 21–45 (1999)CrossRefGoogle Scholar
  24. 24.
    Pereira, H.M., Cooper, H.D.: Towards the global monitoring of biodiversity change. Trends in Ecology & Evolution 21(3), 123–129 (2006)CrossRefGoogle Scholar
  25. 25.
    The ka-Map Development Team: (ka-map), Available from

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David Vaz
    • 1
  • Michel Ferreira
    • 1
  • Ricardo Lopes
    • 1
  1. 1.DCC-FC & LIACC, University of PortoPortugal

Personalised recommendations