Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs

  • Matti Järvisalo
  • Emilia Oikarinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4670)


We introduce an extended tableau calculus for answer set programming (ASP). The proof system is based on the ASP tableaux defined in [Gebser&Schaub, ICLP 2006], with an added extension rule. We investigate the power of Extended ASP Tableaux both theoretically and empirically. We study the relationship of Extended ASP Tableaux with the Extended Resolution proof system defined by Tseitin for clause sets, and separate Extended ASP Tableaux from ASP Tableaux by giving a polynomial length proof of a family of normal logic programs {Π n } for which ASP Tableaux has exponential length minimal proofs with respect to n. Additionally, Extended ASP Tableaux imply interesting insight into the effect of program simplification on the length of proofs in ASP. Closely related to Extended ASP Tableaux, we empirically investigate the effect of redundant rules on the efficiency of ASP solving.


Logic Program Stable Model Proof System Deduction Rule Empty Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to answer set solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS(LNAI), vol. 3835, pp. 95–109. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM TOCL 7(3), 499–562 (2006)CrossRefGoogle Scholar
  4. 4.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: IJCAI, pp. 286–392 (2007)Google Scholar
  5. 5.
    Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of the EATCS 65, 66–89 (1998)zbMATHGoogle Scholar
  6. 6.
    Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)zbMATHGoogle Scholar
  7. 7.
    Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Anger, C., Gebser, M., Janhunen, T., Schaub, T.: What’s a head without a body? In: ECAI, pp. 769–770. IOS Press, Amsterdam (2006)Google Scholar
  9. 9.
    Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or, between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 37–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: LaSh ICLP Workshop, pp. 41–56 (2006)Google Scholar
  11. 11.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Automation of Reasoning 2: Classical Papers on Computational Logic, pp. 466–483. Springer, Heidelberg (1983)Google Scholar
  12. 12.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  13. 13.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic 7(2), 261–268 (2006)CrossRefGoogle Scholar
  15. 15.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12(1-2), 53–87 (1994)zbMATHCrossRefGoogle Scholar
  16. 16.
    Janhunen, T.: Some (in)translatability results for normal logic programs and propositional theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)CrossRefGoogle Scholar
  17. 17.
    Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1–2), 115–137 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning, pp. 311–325. Morgan Kaufmann Publishers, San Francisco (1987)Google Scholar
  20. 20.
    Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)Google Scholar
  21. 21.
    Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like and general resolution. Combinatorica 24(4), 585–603 (2004)zbMATHGoogle Scholar
  22. 22.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)zbMATHCrossRefGoogle Scholar
  23. 23.
    Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4), 28–32 (1976)CrossRefGoogle Scholar
  24. 24.
    Haken, A.: The intractability of resolution. TCS 39(2-3), 297–308 (1985)zbMATHCrossRefGoogle Scholar
  25. 25.
    Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning. LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Matti Järvisalo
    • 1
  • Emilia Oikarinen
    • 1
  1. 1.Laboratory for Theoretical Computer Science, P.O. Box 5400, FI-02015 Helsinki University of Technology (TKK)Finland

Personalised recommendations