Segmentation of the Human Trachea Using Deformable Statistical Models of Tubular Shapes

  • Romulo Pinho
  • Jan Sijbers
  • Toon Huysmans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4678)


In this work, we present two active shape models for the segmentation of tubular objects. The first model is built using cylindrical parameterization and minimum description length to achieve correct correspondences. The other model is a multidimensional point distribution model built from the centre line and related information of the training shapes. The models are used to segment the human trachea in low-dose CT scans of the thorax and are compared in terms of compactness of representation and segmentation effectiveness and efficiency. Leave-one-out tests were carried out on real CT data.


Abdominal Aortic Aneurysm Abdominal Aortic Aneurysm Iterative Close Point Minimum Description Length Tracheal Stenosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cootes, T.F., Taylor, C.J.: Active Shape Models - ’Smart Snakes’. In: Proceedings of British Machine Vision Conference, pp. 266–275. Springer, Heidelberg (1992)Google Scholar
  2. 2.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models: their training and application. Comput. Vis. Image Understand 61, 18–23 (1995)CrossRefGoogle Scholar
  3. 3.
    Lorenz, C., Krahnstover, N.: 3D Statistical Shape Models for Medical Image Segmentation. In: 3DIM 1999. Proceedings of the Second International Conference on 3-D Imaging and Modeling, pp. 414–423. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  4. 4.
    Kelemen, A., Székely, G., Gerig, G.: Three-dimensional Model-based Segmentation of Brain MRI. In: Proc. IEEE Workshop on Biomedical Image Analysis, pp. 4–13. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  5. 5.
    de Bruijne, M., Ginneken, B., Viergever, M., Niessen, W.: Interactive Segmentation of Abdominal Aortic Aneurysms in CTA Images. Medical Image Analysis 8(2), 127–138 (2004)CrossRefGoogle Scholar
  6. 6.
    Pizer, S.M., Thall, A.L, Chen, D.T.: M-Reps: A New Object Representation for Graphics. Technical Report, University of North Carolina, Chappel Hill (1999)Google Scholar
  7. 7.
    Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable M-Reps for 3D Medical Image Segmentation. Int. J. Comput. Vision 55(2-3), 85–106 (2003)CrossRefGoogle Scholar
  8. 8.
    Hacker, S., Handels, H.: Representation and Visualization of Variability in a 3D anatomical Atlas using the Kidney as an Example. In: Cleary, K.R., Galloway, R.L. (eds.) Proc. SPIE Medical Imaging:6141, Visualization, Image-Guided Procedures, and Display, pp. B1–B7 (2006)Google Scholar
  9. 9.
    Huysmans, T., Sijbers, J., Vanpoucke, F., Verdonk, B.: Improved Shape Modeling of Tubular Objects Using Cylindrical Parameterization. In: Yang, G.-Z., Jiang, T., Shen, D., Gu, L., Yang, J. (eds.) Medical Imaging and Augmented Reality. LNCS, vol. 4091, pp. 84–91. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Huysmans, T., Sijbers, J., Verdonk, B.: Parameterization of tubular surfaces on the cylinder. Journal of the Winter School of Computer Graphics 13(3), 97–104 (2005)Google Scholar
  11. 11.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  12. 12.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  13. 13.
    Davies, R.H., Cootes, T.F., Taylor, C.J.: A Minimum Description Length Approach to Statistical Shape Modelling. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 50–63. Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Pinho, R., Sijbers, J., Vos, W.: Efficient approaches to intrathoracic airway tree segmentations. In: Proceedings of the Biomedical Engineering IEEE/EMBS Benelux Symposium, Belgium, vol. 2, pp. 151–154. IEEE, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Romulo Pinho
    • 1
  • Jan Sijbers
    • 1
  • Toon Huysmans
    • 1
  1. 1.University of Antwerp, Physics Department, VisionLabBelgium

Personalised recommendations