Image Upscaling Using Global Multimodal Priors

  • Hiêp Luong
  • Bart Goossens
  • Wilfried Philips
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4678)


This paper introduces a Bayesian restoration method for low-resolution images combined with a geometry-driven smoothness prior and a new global multimodal prior. The multimodal prior is proposed for images that normally just have a few dominant colours. In spite of this, most images contain much more colours due to noise and edge pixels that are part of two or more connected smooth regions. The Maximum A Posteriori estimator is worked out to solve the problem. Experimental results confirm the effectiveness of the proposed global multimodal prior for images with a strong multimodal colour distribution such as cartoons. We also show the visual superiority of our reconstruction scheme to other traditional interpolation and reconstruction methods: noise and compression artifacts are removed very well and our method produces less blur and other annoying artifacts.


Document Image Reconstruction Scheme Dominant Colour Image Interpolation Jagged Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  2. 2.
    Datsenko, D., Elad, M.: Example-Based Single Image Super-Resolution: A Global MAP Approach with Outlier Rejection. The Journal of Multidimensional Systems and Signal Processing (to appear)Google Scholar
  3. 3.
    Dempster, A.P., Lairde, N.M., Rubin, D.B.: Maximum Likelihood From Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39, 1–38 (1977)MATHGoogle Scholar
  4. 4.
    Donaldson, K., Myers, G.: Bayesian Super-Resolution of Text in Video With a Text-Specific Bimodal Prior. International Journal on Document Analysis and Recognition 7, 159–167 (2005)CrossRefGoogle Scholar
  5. 5.
    Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and Robust Multiframe Super Resolution. IEEE Trans. on Image Processing 13, 1327–1344 (2004)CrossRefGoogle Scholar
  6. 6.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-Based Super-Resolution. IEEE Computer Graphics and Applications 22, 56–65 (2002)CrossRefGoogle Scholar
  7. 7.
    Honda, H., Haseyama, M., Kitajima, H.: Fractal Interpolation For Natural Images. In: Proc. of IEEE International Conference of Image Processing, vol. 3, pp. 657–661. IEEE, Los Alamitos (1999)Google Scholar
  8. 8.
    Ledda, A., Luong, H.Q., Philips, W., De Witte, V., Kerre, E.E.: Image Interpolation Using Mathematical Morphology. In: Proc. of 2nd IEEE International Conference On Document Image Analysis For Libraries (to appear)Google Scholar
  9. 9.
    Lehmann, T., Gönner, C., Spitzer, K.: Survey: Interpolations Methods In Medical Image Processing. IEEE Trans. on Medical Imaging 18, 1049–1075 (1999)CrossRefGoogle Scholar
  10. 10.
    Li, X., Orchard, M.T.: New Edge-Directed Interpolation. IEEE Trans. on Image Processing 10, 1521–1527 (2001)CrossRefGoogle Scholar
  11. 11.
    Luong, H.Q., De Smet, P., Philips, W.: Image Interpolation Using Constrained Adaptive Contrast Enhancement Techniques. In: Proc. of IEEE International Conference of Image Processing, vol. 2, pp. 998–1001. IEEE, Los Alamitos (2005)Google Scholar
  12. 12.
    Luong, H.Q., Ledda, A., Philips, W.: An Image Interpolation Scheme for Repetitive Structures. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 104–115. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Matas, J., Koubaroulis, D., Kittler, J.: Colour Image Retrieval and Object Recognition Using the Multimodal Neighbourhood Signature. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 48–64. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Meijering, E.H.W., Niessen, W.J., Viergever, M.A.: Quantitative Evaluation Of Convolution-Based Methods For Medical Image Interpolation. Medical Image Analysis 5, 111–126 (2001)CrossRefGoogle Scholar
  15. 15.
    Morse, B.S., Schwartzwald, D.: Isophote-Based Interpolation. In: Proc. of IEEE International Conference on Image Processing, pp. 227–231. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  16. 16.
    Muresan, D.: Fast Edge Directed Polynomial Interpolation. In: Proc. of IEEE International Conference of Image Processing, vol. 2, pp. 990–993. IEEE, Los Alamitos (2005)Google Scholar
  17. 17.
    Pižurica, A., Vanhamel, I., Sahli, H., Philips, W., Katartzis, A.: A Bayesian Approach To Nonlinear Diffusion Based On A Laplacian Prior For Ideal Image Gradient. In: Proc. of IEEE Workshop On Statistical Signal Processing, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  18. 18.
    Thouin, P., Chang, C.: A Method For Restoration of Low-Resolution Document Images. International Journal on Document Analysis and Recognition 2, 200–210 (2000)CrossRefGoogle Scholar
  19. 19.
    Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In: Proc. of IEEE International Conference on Computer Vision, pp. 839–846. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  20. 20.
    Tschumperlé, D.: Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE’s. International Journal of Computer Vision 1, 65–82 (2006)CrossRefGoogle Scholar
  21. 21.
    Van Trees, H.L.: Detection, Estimation, and Modulation Theory: Part I. John Wiley and Sons, New York (1968)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hiêp Luong
    • 1
  • Bart Goossens
    • 1
  • Wilfried Philips
    • 1
  1. 1.Ghent University - TELIN - IPI - IBBT, Sint-Pietersnieuwstraat 41, B-9000 GhentBelgium

Personalised recommendations