A New Supervised Evaluation Criterion for Region Based Segmentation Methods

  • Adel Hafiane
  • Sébastien Chabrier
  • Christophe Rosenberger
  • Hélène Laurent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4678)


We present in this article a new supervised evaluation criterion that enables the quantification of the quality of region segmentation algorithms. This criterion is compared with seven well-known criteria available in this context. To that end, we test the different methods on natural images by using a subjective evaluation involving different experts from the French community in image processing. Experimental results show the benefit of this new criterion.


Ground Truth Image Segmentation Segmentation Result Average Standard Deviation Supervise Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haralick, R.H., Shapiro, L.G.: Image Segmentation Techniques. Image Segmentation Techniques, Computer Vision, Graphics and Image Processing (CVGIP) 29, 100–132 (1985)CrossRefGoogle Scholar
  2. 2.
    Heath, M., Sarkar, S., Sanocki, T., Bowyer, K.: Comparison of Edge Detectors: A Methodology and Initial Study. Computer Vision and Image Understanding (CVIU) 69, 38–54 (1996)CrossRefGoogle Scholar
  3. 3.
    Freixenet, J., Muñoz, X., Raba, D., Marti, J., Cufi, X.: Yet Another Survey on Image Segmentation: Region and Boundary Information Integration. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 408–422. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Andrey, P.: Selectionist Relaxation: Genetic Algorithms Applied to Image Segmentation. Image and Vision Computing 17, 175–187 (1999)CrossRefGoogle Scholar
  5. 5.
    Bhanu, B., Peng, J.: Adaptative Integrated Image Segmentation and Object Recognition. IEEE transactions on systems, man, and cybernetics 30, 427–441 (2000)CrossRefGoogle Scholar
  6. 6.
    Cavallaro, A., Gelasca, E.D., Ebrahimi, T.: Objective evaluation of segmentation quality using spatio-temporal context. In: IEEE International Conference on Image Processing (ICIP), pp. 301–304. IEEE, Los Alamitos (2002)Google Scholar
  7. 7.
    Jiang, X., Marti, C., Irniger, C., Bunke, H.: Distance Measures for Image Segmentation Evaluation. EURASIP Journal on Applied Signal Processing 2006, Article ID 35909 (2006)Google Scholar
  8. 8.
    Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognition 29, 1335–1346 (1996)CrossRefGoogle Scholar
  9. 9.
    Chabrier, S., Rosenberger, C., Laurent, H., Emile, B., Marché, P.: Evaluating the segmentation result of a gray-level image. In: European Signal Processing Conference (EUSIPCO), pp. 953–956 (2004)Google Scholar
  10. 10.
    Montresor, S., Lado, M.J., Tahoces, P.G., Souto, M., Vidal, J.J.: Analytic wavelets applied for the detection of microcalcifications. A tool for digital mammography. In: European Signal Processing Conference (EUSIPCO), pp. 2215–2218 (2004)Google Scholar
  11. 11.
    Marques, F., Cuberas, G., Gasull, A., Seron, D., Moreso, F., Joshi, N.: Mathematic morphology approach for renal biopsy analysis. In: European Signal Processing Conference (EUSIPCO), pp. 2195–2198 (2004)Google Scholar
  12. 12.
    Lee, W.W., Richardson, I., Gow, K., Zhao, Y., Staff, R.: Hybrid segmentation of the hippocampus in MR images. In: European Signal Processing Conference (EUSIPCO) (2005)Google Scholar
  13. 13.
    Chabrier, S., Rosenberger, C., Emile, B.: Evaluation methodologies of image processing: an overview. In: 8th International IEEE Conference on Signal Processing (ICSP), IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  15. 15.
    Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence (2001)Google Scholar
  16. 16.
    Kermad, C., Vozel, B., Chehdi, K.: Hyperspectral image analysis and dimensionality: a scalar scheme through multi-thresholding technique. In: Proceedings of the Eos/Spie Symposium on Remote sensing, vol. 31(4170) (2000)Google Scholar
  17. 17.
    Vinet, L.: Segmentation et mise en correspondance de régions de paires d’images stéréoscopiques, Thése de Doctorat de l’université de Paris IX Dauphine (1991)Google Scholar
  18. 18.
    Huang, Q., Dom, B.: Quantitative Methods of Evaluating Image Segmentation. In: Proceedings of the International Conference on Image Processing (ICIP’95), vol. 3, pp. 53–56 (1995)Google Scholar
  19. 19.
    Yasnoff, W.A., Mui, J.K., Bacus, J.W.: Error measures for scene segmentation. Pattern Recognition 9, 217–231 (1977)CrossRefGoogle Scholar
  20. 20.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proceedings of the 8th International Conference Computer Vision, pp. 416–423 (2001)Google Scholar
  21. 21.
    MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  22. 22.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Adel Hafiane
    • 1
  • Sébastien Chabrier
    • 1
  • Christophe Rosenberger
    • 1
  • Hélène Laurent
    • 1
  1. 1.Laboratoire Vision et Robotique - UPRES EA 2078, ENSI de Bourges - Université d’Orléans, 88 boulevard Lahitolle, 18020 Bourges CedexFrance

Personalised recommendations