A Survey of Infinite Time Turing Machines

  • Joel David Hamkins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4664)


Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time, thereby providing a natural model of infinitary computability, with robust notions of computability and decidability on the reals, while remaining close to classical concepts of computability. Here, I survey the theory of infinite time Turing machines and recent developments. These include the rise of infinite time complexity theory, the introduction of infinite time computable model theory, the study of the infinite time analogue of Borel equivalence relation theory, and the introduction of new ordinal computational models. The study of infinite time Turing machines increasingly relies on the interaction of methods from set theory, descriptive set theory and computability theory.


Turing Machine Time Analogue Computable Presentation Time Context Ordinal Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DHS05]
    Deolalikar, V., Hamkins, J.D., Schindler, R.-D.: P ≠ NP ∩ co-NP for infinite time turing machines. Journal of Logic and Computation 15(5), 577–592 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Ham02]
    Hamkins, J.D.: Infinite time turing machines. Minds and Machines, (special issue devoted to hypercomputation) 12(4), 521–539 (2002)Google Scholar
  3. [Ham04]
    Hamkins, J.D.: Supertask computation. In: Piwinger, B., Löwe, B., Räsch, T. (eds.) Classical and New Paradigms of Computation and their Complexity Hierarchies. Trends in Logic, vol. 23, pp. 141–158. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  4. [Ham05]
    Hamkins, J.D.: Infinitary computability with infinite time Turing machines. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, Springer, Heidelberg (2005)Google Scholar
  5. [HL00]
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. J. Symbolic Logic 65(2), 567–604 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [HL02]
    Hamkins, J.D., Lewis, A.: Post’s problem for supertasks has both positive and negative solutions. Archive for Mathematical Logic 41(6), 507–523 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [HMSW07]
    Hamkins, J.D., Miller, R., Seabold, D., Warner, S.: Infinite time computable model theory. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, Springer, Heidelberg (2007)Google Scholar
  8. [HS01]
    Hamkins, J.D., Seabold, D.: Infinite time Turing machines with only one tape. Mathematical Logic Quarterly 47(2), 271–287 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [HW03]
    Hamkins, J.D., Welch, P.: \(P^f\not=NP^f\) for almost all f. Mathematical Logic Quarterly 49(5), 536–540 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Koe05]
    Koepke, P.: Turing computations on ordinals. Bulletin of Symbolic Logic 11(3), 377–397 (2005)zbMATHCrossRefGoogle Scholar
  11. [KS06]
    Koepke, P., Siders, R.: Register computations on ordinals. Archive for Mathematical Logic (submitted)Google Scholar
  12. [L0̈1]
    Löwe, B.: Revision sequences and computers with an infinite amount of time. Logic Comput. 11(1), 25–40 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [LM04]
    Lenzi, G., Monteleone, E.: On fixpoint arithmetic and infinite time turing machines. Information Processing Letters 91(3), 121–128 (2004)CrossRefMathSciNetGoogle Scholar
  14. [Sac90]
    Sacks, G.E.: Higher Recursion Theory. In: Perspectives in Mathematical Logic, Springer, Heidelberg (1990)Google Scholar
  15. [Sch03]
    Schindler, R.-D.: P ≠ NP for infinite time Turing machines. Monatshefte für Mathematik 139(4), 335–340 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [Wel]
    Welch, P.: On a question of Deolalikar, Hamkins and Schindler, available on the author’s web page at
  17. [Wel99]
    Welch, P.: Friedman’s trick: Minimality arguments in the infinite time Turing degrees. In: “Sets and Proofs”, Proceedings ASL Logic Colloquium, vol. 258, pp. 425–436 (1999)Google Scholar
  18. [Wel00a]
    Welch, P.: Eventually infinite time Turing machine degrees: Infinite time decidable reals. Journal of Symbolic Logic 65(3), 1193–1203 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Wel00b]
    Welch, P.: The lengths of infinite time Turing machine computations. Bulletin of the London Mathematical Society 32(2), 129–136 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  20. [Wel05]
    Welch, P.: The transfinite action of 1 tape Turing machines. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joel David Hamkins
    • 1
  1. 1.The City University of New York 

Personalised recommendations