Advertisement

Accepting Networks of Splicing Processors with Filtered Connections

  • Juan Castellanos
  • Florin Manea
  • Luis Fernando de Mingo López
  • Victor Mitrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4664)

Abstract

In this paper we simplify accepting networks of splicing processors considered in [8] by moving the filters from the nodes to the edges. Each edge is viewed as a two-way channel such that input and output filters coincide. Thus, the possibility of controlling the computation in such networks seems to be diminished. In spite of this and of the fact that splicing alone is not a very powerful operation these networks are still computationally complete. As a consequence, we propose characterizations of two complexity classes, namely NP and PSPACE, in terms of accepting networks of restricted splicing processors with filtered connections.

Keywords

Turing Machine Mathematical Linguistics Communication Step Input Word Tape Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splicing. Computers and AI 15, 211–232 (1996)MATHGoogle Scholar
  2. 2.
    Culik, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Appl. Math. 31, 261–277 (1991)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31–40. World Scientific, Singapore (1994)Google Scholar
  4. 4.
    Fahlman, S., Hinton, G., Seijnowski, T.: Massively parallel architectures for AI: NETL, THISTLE and Boltzmann Machines. In: Proc. AAAI National Conf. on AI, pp. 109–113. William Kaufman, Los Altos (1983)Google Scholar
  5. 5.
    Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman, San Francisco, CA (1979)MATHGoogle Scholar
  6. 6.
    Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  7. 7.
    Loos, R.: On accepting networks of splicing processors of size 3. In: Proc. CiE 2007 (in press, 2007)Google Scholar
  8. 8.
    Manea, F., Martín-Vide, C., Mitrana, V.: Accepting networks of splicing processors: complexity results. Theoretical Computer Science 371, 72–82 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Manea, F., Martín-Vide, C., Mitrana, V.: All NP-problems can be solved in polynomial time by accepting networks of splicing processors of constant size. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 47–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Martín-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and perspectives. In: Molecular Computational Models: Unconventional Approaches, pp. 78–114. Idea Group Publishing, Hershey (2005)Google Scholar
  11. 11.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Paradigms. Springer, Berlin (1998)MATHGoogle Scholar
  12. 12.
    Păun, G.: Distributed architectures in DNA computing based on splicing: limiting the size of components. In: Unconventional Models of Computation, pp. 323–335. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Pixton, D.: Regularity of splicing languages. Discrete Appl. Math. 69, 101–124 (1996)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Juan Castellanos
    • 1
  • Florin Manea
    • 2
  • Luis Fernando de Mingo López
    • 3
  • Victor Mitrana
    • 2
    • 4
  1. 1.Department of Artificial Intelligence, Polytechnical University of Madrid, 28660 Boadilla del Monte, MadridSpain
  2. 2.Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014, BucharestRomania
  3. 3.Dept. Organización y Estructura de la Información, Escuela Universitaria de Informática, Universidad Politécnica de Madrid, Crta. de Valencia km. 7 - 28031 MadridSpain
  4. 4.Research Group in Mathematical Linguistics, Rovira i Virgili University, Pça. Imperial Tarraco 1, 43005, TarragonaSpain

Personalised recommendations