Advertisement

Uniform Solution of QSAT Using Polarizationless Active Membranes

  • Artiom Alhazov
  • Mario J. Pérez-Jiménez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4664)

Abstract

It is known that the satisfiability problem (SAT) can be solved with a semi-uniform family of deterministic polarizationless P systems with active membranes with non–elementary membrane division. We present a double improvement of this result by showing that the satisfiability of a quantified Boolean formula (QSAT) can be solved by a uniform family of P systems of the same kind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  2. 2.
    Alhazov, A., Martín–Vide, C., Pan, L.: Solving graph problems by P systems with restricted elementary active membranes. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 1–22. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Alhazov, A., Pan, L., Păun, G.: Trading Polarizations for Labels in P Systems with Active Membranes. Acta Informaticae 41(2-3), 111–144 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Alhazov, A., Pérez-Jiménez, M.J.: Uniform Solution to QSAT Using Polarizationless Active Membranes. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, Sevilla, vol. I, pp. 29–40. Fénix Editora (2006)Google Scholar
  5. 5.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A fast P system for finding a balanced 2-partition. Soft Computing 9(9), 673–678 (2005)MATHCrossRefGoogle Scholar
  6. 6.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: P systems with active membranes, without polarizations and without dissolution: A characterization of P. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 105–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Papadimitriou, C.H.: Computational Complexity. Addison–Wesley, Reading (1995)Google Scholar
  9. 9.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Păun, G.: P systems with active membranes: Attacking NP–complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)MATHMathSciNetGoogle Scholar
  11. 11.
    Păun, G., Suzuki, Y., Tanaka, H., Yokomori, T.: On the power of membrane division in P systems. Theoretical Computer Science 324(1), 61–85 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pérez–Jiménez, M.J.: An approach to computational complexity in Membrane Computing. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 85–109. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by active membranes. New Generation Computing 23(4), 367–384 (2005)Google Scholar
  14. 14.
    Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear–time solution to the Knapsack problem using P systems with active membranes. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS, vol. 2933, pp. 250–268. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: Solving the Bin Packing problem by recognizer P systems with active membranes. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Proceedings of the Second Brainstorming Week on Membrane Computing, (Report RGNC 01/04, University of Seville) pp. 414–430 (2004)Google Scholar
  16. 16.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial complexity class in P systems using membrane division. In: Proceedings of the 5th Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, Budapest. Computer and Automation Research Institute of the Hungarian Academy of Sciences, pp. 284–294 (2003)Google Scholar
  17. 17.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pérez-Jiménez, M.J., Romero–Campero, F.J.: Attacking the Common Algorithmic Problem by recognizer P systems. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 304–315. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Sosík, P.: The computational power of cell division. Natural Computing 2(3), 287–298 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Mario J. Pérez-Jiménez
    • 3
  1. 1.Department of Information Technologies, Åbo Akademi University, Turku Center for Computer Science, FIN-20520 TurkuFinland
  2. 2.Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Str. Academiei 5, Chişinău, MD-2028Moldova
  3. 3.Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Sevilla, Avda. Reina Mercedes s/n, 41012 SevillaSpain

Personalised recommendations