Advertisement

Partial Halting in P Systems Using Membrane Rules with Permitting Contexts

  • Artiom Alhazov
  • Rudolf Freund
  • Marion Oswald
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4664)

Abstract

We consider a new variant of the halting condition in P systems, i.e., a computation in a P system is already called halting if not for all membranes a rule is applicable anymore at the same time, whereas usually a computation is called halting if no rule is applicable anymore in the whole system. This new variant of partial halting is especially investigated for several variants of P systems using membrane rules with permitting contexts and working in different derivation modes.

Keywords

computational completeness halting minimal parallelism P systems permitting context 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A.: On determinism of evolution-communication P systems. Journal of Universal Computer Science 10(5), 502–508 (2004)MathSciNetGoogle Scholar
  2. 2.
    Alhazov, A.: Number of protons/bi-stable catalysts and membranes in P systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 79–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Alhazov, A.: Communication in Membrane Systems with Symbol Objects, Ph.D. Thesis, Tarragona, Spain (2006)Google Scholar
  4. 4.
    Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial versus total halting in P systems. In: Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla (to appear, 2007)Google Scholar
  5. 5.
    Bernardini, F., Manca, V.: P systems with boundary rules. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 107–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bernardini, F., Romero-Campero, F.J., Gheorghe, M., Pérez-Jiménez, M.J., Margenstern, M., Verlan, S., Krasnogor, N.: On P systems with bounded parallelism. In: Ciobanu, G., Păun, G. (eds.) Pre-Proc. of First International Workshop on Theory and Application of P Systems, Timisoara, Romania, September 26–27, 2005, pp. 31–36 (2005)Google Scholar
  7. 7.
    Cavaliere, M.: Evolution-communication P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal parallelism (accepted for TCS)Google Scholar
  9. 9.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Heidelberg (1989)Google Scholar
  10. 10.
    Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal Computer Science 5(2), 33–49 (1999)MathSciNetGoogle Scholar
  11. 11.
    Freund, R., Oswald, M.: P Systems with activated/prohibited membrane channels. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 261–268. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Freund, R., Oswald, M.: P systems with partial halting (accepted, 2007)Google Scholar
  13. 13.
    Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.): WMC 2005. LNCS, vol. 3850. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  14. 14.
    Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue-like P systems with channel states. Theoretical Computer Science 330, 101–116 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jersey, USA (1967)zbMATHGoogle Scholar
  16. 16.
    Păun, A., Păun, G.: The power of communication: P systems with symport/ antiport. New Generation Computing 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Păun, G.: Computing with membranes. J. of Computer and System Sciences 61(1), 108–143 (2000) and TUCS Research Report 208 (1998) http://www.tucs.fi
  18. 18.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  19. 19.
    Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing. LNCS, vol. 2597. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  20. 20.
    Rogozhin, Y., Alhazov, A., Freund, R.: Computational power of symport/antiport: history, advances, and open problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. 3 volumes. Springer, Berlin (1997)zbMATHGoogle Scholar
  22. 22.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: On communication in tissue P systems: conditional uniport. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 507–521. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    The P Systems Web Page, http://psystems.disco.unimib.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Artiom Alhazov
    • 1
  • Rudolf Freund
    • 2
  • Marion Oswald
    • 2
  • Sergey Verlan
    • 3
  1. 1.Department of Information Technologies, Abo Akademi University, Turku Center for Computer Science, FIN-20520 Turku, Finland, and Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Str. Academiei 5, Chişinău, MD-2028, E-mail: aartiom@math.mdMoldova
  2. 2.Faculty of Informatics, Vienna University of Technology, Favoritenstr. 9, 1040 ViennaAustria
  3. 3.LACL, Département Informatique, UFR Sciences et Technologie, Université Paris XII, 61, av. Général de Gaulle, 94010 CréteilFrance

Personalised recommendations