Building on Success in Genetic Programming: Adaptive Variation and Developmental Evaluation

  • Tuan-Hao Hoang
  • Daryl Essam
  • Bob McKay
  • Nguyen-Xuan Hoai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4683)


We investigate a developmental tree-adjoining grammar guided genetic programming system (DTAG3P + ), in which genetic operator application rates are adapted during evolution. We previously showed developmental evaluation could promote structured solutions and improve performance in symbolic regression problems. However testing on parity problems revealed an unanticipated problem, that good building blocks for early developmental stages might be lost in later stages of evolution. The adaptive variation rate in DTAG3P +  preserves good building blocks found in early search for later stages. It gives both good performance on small k-parity problems, and good scaling to large problems.


Genetic Programming Developmental Incremental Learning Adaptive Mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lindenmayer, A.: Mathematical models for cellular interaction in development, parts i and ii. Journal of Theoretical Biology 18, 280–299, 300–315 (1968)Google Scholar
  2. 2.
    Hoai, N.X., McKay, R.I.B., Essam, D.: Representation and structural difficulty in genetic programming. IEEE Transactions on Evolutionary Computation 10(2), 157–166 (2006)CrossRefGoogle Scholar
  3. 3.
    McKay, R.I., Hoang, T.H., Essam, D.L., Nguyen, X.H.: Developmental evaluation in genetic programming: the preliminary results. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 280–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Hao, H.T., Essam, D., McKay, R.I., Nguyen, X.H.: Developmental evaluation in genetic programming: A TAG-based framework. In: Pham, T.L., Le, H.K., Nguyen, X.H. (eds.) Proceedings of the Third Asian-Pacific workshop on Genetic Programming, pp. 86–97. Military Technical Academy, Hanoi, VietNam (2006)Google Scholar
  5. 5.
    Shin, J., Kang, M., McKay, R.I.B., Nguyen, X., Hoang, T.H., Mori, N., Essam, D.: Analysing the regularity of genomes using compression and expression simplification. In: EuroGP 2007. LNCS, vol. 4445, pp. 251–260. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)zbMATHGoogle Scholar
  7. 7.
    Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley & Sons, Inc., New York, NY, USA (1981)zbMATHGoogle Scholar
  8. 8.
    Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)Google Scholar
  9. 9.
    Angeline, P.J., Pollack, J.B.: Coevolving high-level representations. In: Langton, C.G. (ed.) Artificial Life III. SFI Studies in the Sciences of Complexity, vol. XVII, pp. 55–71, Addison-Wesley, Santa Fe, New Mexico (June 15-19, 1992/1994)Google Scholar
  10. 10.
    Rosca, J.P., Ballard, D.H.: Hierarchical self-organization in genetic programming. In: Proceedings of the Eleventh International Conference on Machine Learning, Morgan Kaufmann, San Francisco (1994)Google Scholar
  11. 11.
    Angeline, P.J.: Two self-adaptive crossover operators for genetic programming. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, pp. 89–110. MIT Press, Cambridge, MA, USA (1996)Google Scholar
  12. 12.
    Teller, A.: Evolving programmers: The co-evolution of intelligent recombination operators. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, pp. 45–68. MIT Press, Cambridge, MA, USA (1996)Google Scholar
  13. 13.
    Iba, H., de Garis, H.: Extending genetic programming with recombinative guidance. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2., pp. 69–88. MIT Press, Cambridge, MA, USA (1996)Google Scholar
  14. 14.
    Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Palaniswami, M., Attikiouzel, Y. (eds.) Computational Intelligence: A Dynamic Systems Perspective, pp. 152–163. IEEE Press, NJ, New York (1995)Google Scholar
  15. 15.
    Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, New York, NY, USA (1996)zbMATHGoogle Scholar
  16. 16.
    Langdon, W.B., Poli, R.: Why “building blocks” don’t work on parity problems. Technical Report CSRP-98-17, University of Birmingham, School of Computer Science (July 13, 1998)Google Scholar
  17. 17.
    Poli, R., Page, J.: Solving high-order boolean parity problems with smooth uniform crossover, sub-machine code GP and demes. Genetic Programming and Evolvable Machines 1(1/2), 37–56 (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Schabes, Y., Waters, R.: Tree insertion grammar: A cubic-time parsable formalism that lexicalizes context-free grammar without changing the trees produced. Computational Linguistics 20(1), 479–513 (1995)Google Scholar
  19. 19.
    Lukasiewicz, J.: On Three-Valued Logic, pp. 16–18. Clarendon Press, Oxford, UK (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tuan-Hao Hoang
    • 1
  • Daryl Essam
    • 1
  • Bob McKay
    • 2
  • Nguyen-Xuan Hoai
    • 3
  1. 1.Australian Defence Force Academy, CanberraAustralia
  2. 2.Seoul National University, SeoulKorea
  3. 3.VietNam Military Technical Academy, HanoiVietNam

Personalised recommendations