Any-World Access to OWL from Prolog

  • Tobias Matzner
  • Pascal Hitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)

Abstract

The W3C standard OWL provides a decidable language for representing ontologies. While its use is rapidly spreading, efforts are being made by researchers worldwide to augment OWL with additional expressive features or by interlacing it with other forms of knowledge representation, in order to make it applicable for even further purposes. In this paper, we integrate OWL with one of the most successful and most widely used forms of knowledge representation, namely Prolog, and present a hybrid approach which layers Prolog on top of OWL in such a way that the open-world semantics of OWL becomes directly accessible within the Prolog system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loyer, Y., Straccia, U.: Any-world assumptions in logic programming. Theoretical Computer Science 342, 351–381 (2005)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. Journal of the ACM 42, 741–843 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Angele, J., Lausen, G.: Ontologies in F-logic. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 29–50. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Ginsberg, M.L.: Multivalued logics: A uniform approach to inference in artificial intelligence. Computational Intelligence 4, 265–316 (1988)CrossRefGoogle Scholar
  5. 5.
    Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logic, pp. 5–37. Reidel, Dordrecht, Netherlands (1977)Google Scholar
  6. 6.
    Fitting, M.: The family of stable models. Journal of Logic Programming 17, 197–225 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fitting, M.: A kripke-kleene semantics for logic programs. Journal of Logic Programming 2, 295–312 (1985)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fitting, M.C.: Bilattices in logic programming. In: 20th International Symposium on Multiple-Valued Logic, Charlotte, pp. 238–247. IEEE CS Press, Los Alamitos (1990)Google Scholar
  9. 9.
    van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38, 620–650 (1991)MATHCrossRefGoogle Scholar
  10. 10.
    Tarski, A.: A lattice-theoretic fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)MATHMathSciNetGoogle Scholar
  11. 11.
    Motik, B.: Reasoning in description logics using resolution and deductive databases. PhD thesis, Universität Karlsruhe (2006)Google Scholar
  12. 12.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Fitting, M.: Fixpoint semantics for logic programming – a survey. Theoretical Computer Science 278, 25–51 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kunen, K.: Negation in logic programming. Journal of Logic Programming 4, 289–308 (1987)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for description logic programs in the semantic web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.) KR 2004. Principles of Knowledge Representation and Reasoning, pp. 141–151. AAAI Press, Menlo Park, California (2004)Google Scholar
  17. 17.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–386 (1991)CrossRefGoogle Scholar
  18. 18.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules with external evaluations for semantic-web reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Motik, B., Rosati, R.: Closing semantic web ontologies. Technical report, University of Manchester, UK (2006)Google Scholar
  20. 20.
    Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings of IJCAI 1991, San Mateo, CA., pp. 381–386. Morgan Kaufmann, San Francisco (1991)Google Scholar
  21. 21.
    Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, June 2-5, 2006, pp. 68–78. AAAI Press (2006)Google Scholar
  22. 22.
    Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tobias Matzner
    • 1
  • Pascal Hitzler
    • 1
  1. 1.Institute AIFB, Universität KarlsruheGermany

Personalised recommendations