Integrating Action Calculi and Description Logics

  • Conrad Drescher
  • Michael Thielscher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)

Abstract

General action languages, like e.g. the Situation Calculus, use full classical logic to represent knowledge of actions and their effects in dynamic domains. Description Logics, on the other hand, have been developed to represent static knowledge with the help of decidable subsets of first order logic. In this paper, we show how to use Description Logic as the basis for a decidable yet still expressive action formalism. To this end, we use ABoxes as decidable state descriptions in the basic Fluent Calculus. As a second contribution, we thus obtain an independent semantics – based on a general action formalism – for a recent method for ABox-Update.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCarthy, J.: Situations, actions, and causal laws. Technical Report AIM-2, AI Project, Stanford University (1963)Google Scholar
  2. 2.
    Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory and Practice of Logic Programming 5, 533–565 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Lespérance, Y., Levesque, H.J., Lin, F.D., Marcu, R.R., Scherl, R.B.: A logical approach to high-level robot programming—A progress report. In: Papers from the 1994 AAAI Fall Symposium, AAAI (1994)Google Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  5. 5.
    Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 46–56. AAAI Press (2006)Google Scholar
  6. 6.
    Thielscher, M.: Reasoning Robots: The Art and Science of Programming Robotic Agents. Applied Logic Series, vol. 33. Kluwer Academic Publishers, Dordrecht (2005)MATHGoogle Scholar
  7. 7.
    Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: DL2004. Proceedings of the 2004 International Workshop on Description Logics (2004)Google Scholar
  8. 8.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Haarslev, V., Möller, R.: Racer system description. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, London (1972)MATHGoogle Scholar
  11. 11.
    Winslett, M.: Reasoning about action using a possible models approach. In: aaai88, pp. 89–93 (1988)Google Scholar
  12. 12.
    Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language, and Information 14, 369–395 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ginsberg, M.L., Smith, D.E.: Reasoning about action II: the qualification problem. Artificial Intelligence 35, 311 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lin, F.: Embracing causality in specifying the indirect effects of actions. In: Mellish, C.S. (ed.) IJCAI 1995. Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 1985–1991. Morgan Kaufmann, San Francisco (1995)Google Scholar
  15. 15.
    Thielscher, M.: Ramification and causality. Artificial Intelligence Journal 89, 317–364 (1997)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153, 49–104 (2004)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Giacomo, G.D., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic ontologies at the instance level. In: AAAI 2006. Proceedings of the Twenty-first National Conference on Artificial Intelligence (2006)Google Scholar
  18. 18.
    Liu, H., Lutz, C., Milicic, M., Wolter, F.: Description logic actions with general TBoxes: a pragmatic approach. In: DL 2006. Proceedings of the 2006 International Workshop on Description Logics (2006)Google Scholar
  19. 19.
    Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description logics and action formalisms: First results. In: Proceedings of AAAI-05 (2005)Google Scholar
  20. 20.
    Gu, Y., Soutchanski, M.: A logic for decidable reasoning about services. In: ECAI 2006. Proceedings of the 4th International Workshop on AI for Service Composition (2006)Google Scholar
  21. 21.
    Gu, Y., Soutchanski, M.: Decidable reasoning in a modified situation calculus. In: IJCAI 2007. Proceedings of International Joint Conference on AI (2007)Google Scholar
  22. 22.
    Schiffel, S., Thielscher, M.: Reconciling situation calculus and fluent calculus. In: Proceedings of AAAI-06, Boston, MA, pp. 287–292. AAAI Press (2006)Google Scholar
  23. 23.
    Halaschek-Wiener, C., Parsia, B., Sirin, E., Kalyanpur, A.: Description logic reasoning for dynamic aboxes. In: DL 2006. Proceedings of the 2006 International Workshop on Description Logics (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Conrad Drescher
    • 1
  • Michael Thielscher
    • 1
  1. 1.Department of Computer Science, Dresden University of Technology, Nöthnitzer Str. 46, 01187 DresdenGermany

Personalised recommendations