Externalizing the Multiple Sequence Alignment Problem with Affine Gap Costs

  • Stefan Edelkamp
  • Peter Kissmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)


Multiple sequence alignment (MSA) is a problem in computational biology with the goal to discover similarities between DNA or protein sequences. One problem in larger instances is that the search exhausts main memory. This paper applies disk-based heuristic search to solve MSA benchmarks. We extend iterative-deepening dynamic programming, a hybrid of dynamic programming and IDA*, for which optimal alignments with respect to similarity metrics and affine gap cost are computed. We achieve considerable savings of main memory with an acceptable time overhead. By scaling buffer sizes, the space-time trade-off can be adapted to existing resources.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altschul, S.: Gap costs for multiple sequence alignment. Journal of Theoretical Biology 138, 297–309 (1989)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Hirschberg, D.S.: A linear space algorithm for computing common subsequences. Communications of the ACM 18(6), 341–343 (1975)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kissmann, P.: Externalisierung des Sequenzenalignierungsproblems. Diploma Thesis, University of Dortmund (January 2007)Google Scholar
  4. 4.
    Korf, R.E., Zhang, W., Thayer, I., Hohwald, H.: Frontier search. Journal of the ACM 52(5), 715–748 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Niewiadomski, R., Amaral, J.N., Holte, R.C.: Sequential and parallel algorithms for frontier A* with delayed duplicate detection. In: AAAI (2006)Google Scholar
  6. 6.
    Schroedl, S.: An improved search algorithm for optimal multiple sequence alignment. Journal of Artificial Intelligence Research 23, 587–623 (2005)MATHMathSciNetGoogle Scholar
  7. 7.
    Wah, B.W., Shang, Y.: A comparison of a class of IDA* search algorithms. International Journal of Tools with Artificial Intelligence 3(4), 493–523 (1995)CrossRefGoogle Scholar
  8. 8.
    Zhou, R., Hansen, E.: Sparse-memory graph search. In: IJCAI, pp. 1259–1268 (2003)Google Scholar
  9. 9.
    Zhou, R., Hansen, E.: Sweep A*: Space-efficient heuristic search in partially-ordered graphs. In: ICTAI, pp. 427–434 (2003)Google Scholar
  10. 10.
    Zhou, R., Hansen, E.: Breadth-first heuristic search. In: ICAPS, pp. 92–100 (2004)Google Scholar
  11. 11.
    Zhou, R., Hansen, E.: K-Group A* for multiple sequence alignment with quasi-natural gap costs. In: ICTAI, pp. 688–695 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Stefan Edelkamp
    • 1
  • Peter Kissmann
    • 1
  1. 1.Computer Science Department, University of Dortmund 

Personalised recommendations