Advertisement

Deep Inference for Automated Proof Tutoring?

  • Christoph Benzmüller
  • Dominik Dietrich
  • Marvin Schiller
  • Serge Autexier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)

Abstract

ΩMEGA [7], a mathematical assistant environment comprising an interactive proof assistant, a proof planner, a structured knowledge base, a graphical user interface, access to external reasoners, etc., is being developed since the early 90’s at Saarland University. Similar to HOL4, Isabelle/HOL, Coq, or Mizar, the overall goal of the project is to develop a system platform for formal methods (not only) in mathematics and computer science. In ΩMEGA, user and system interact in order to produce verifiable and trusted proofs. By continously improving (not only) automation and interaction support in the system we want to ease the usually very tedious formalization and proving task for the user.

Keywords

Successor State Natural Deduction Assessment Module Interactive Proof Proof Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autexier, S.: The core calculus. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Benzmüller, C., Vo, Q.B.: Mathematical domain reasoning tasks in natural language tutorial dialog on proofs. In: Proc. AAAI-05, AAAI Press/The MIT Press (2005)Google Scholar
  3. 3.
    Benzmüller, C., et al.: Natural language dialog with a tutor system for mathematical proofs. In: Ullrich, C., Siekmann, J.H., Lu, R. (eds.) Cognitive Systems. LNCS (LNAI), vol. 4429, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Benzmüller, C., et al.: Diawoz-II - a tool for wizard-of-oz experiments in mathematics. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Benzmüller, C., et al.: Proof planning: A fresh start? In: Proc. of IJCAR 2001 Workshop: Future Directions in Automated Reasoning, Siena, Italy (2001)Google Scholar
  6. 6.
    Dietrich, D., Buckley, M.: Verification of Proof Steps for Tutoring Mathematical Proofs. In: Proc. AIED 2007 (to appear)Google Scholar
  7. 7.
    Siekmann, J., et al.: Computer supported mathematics with omega. J. Applied Logic 4(4), 533–559 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Autexier, S., Dietrich, D.: Synthesizing Proof Planning Methods and Oants Agents from Mathematical Knowledge. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, Springer, Heidelberg (2006)Google Scholar
  9. 9.
    McMath, D., Rozenfeld, M., Sommer, R.: A computer environment for writing ordinary mathematical proofs. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 507–516. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Zinn, C.: A computational framework for understanding mathematical discourse. Logic J. of the IGPL 11, 457–484 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dietrich, D.: The tasklayer of the omega system. Master’s thesis, Universität des Saarlandes, Saarbrücken, Germany (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christoph Benzmüller
    • 1
    • 2
  • Dominik Dietrich
    • 1
  • Marvin Schiller
    • 1
  • Serge Autexier
    • 1
    • 3
  1. 1.Dept. of Computer Science, Saarland University, 66041 SaarbrückenGermany
  2. 2.Computer Laboratory, The University of Cambridge, Cambridge, CB3 0FDUK
  3. 3.German Research Centre for Artifificial Intelligence (DFKI), Stuhlsatzenhausweg 3, 66123 SaarbrückenGermany

Personalised recommendations