On the Construction and Evaluation of Flexible Plan-Refinement Strategies

  • Bernd Schattenberg
  • Julien Bidot
  • Susanne Biundo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)


This paper describes a system for the systematic construction and evaluation of planning strategies. It is based on a proper formal account of refinement planning and allows to decouple plan-deficiency detection, refinement computation, and search control. In adopting this methodology, planning strategies can be explicitly described and easily deployed in various system configurations.

We introduce novel domain-independent planning strategies that are applicable to a wide range of planning capabilities and methods. These so-called HotSpot strategies are guided by information about current plan defects and solution options. The results of a first empirical performance evaluation are presented in the context of hybrid planning.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joslin, D., Pollack, M.: Least-cost flaw repair: A plan refinement strategy for partial-order planning. In: Hayes-Roth, B., Korf, R. (eds.) Proc. of the 12th National Conference on AI, pp. 1004–1009. AAAI (1994)Google Scholar
  2. 2.
    Peot, M.A., Smith, D.: Threat removal strategies for partial-order planning. In: Proc. of the 11th National Conference on AI, pp. 492–499 (1993)Google Scholar
  3. 3.
    Schubert, L.K., Gerevini, A.: Accelerating partial order planners by improving plan and goal choices. In: Proc. of the 7th IEEE International Conference on Tools with AI, pp. 442–450. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  4. 4.
    Tsuneto, R., Nau, D., Hendler, J.: Plan-refinement strategies and search-space size. In: Steel, S., Alami, R. (eds.) ECP 1997. LNCS, vol. 1348, pp. 414–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    McCluskey, T.L.: Object transition sequences: A new form of abstraction for HTN planners. In: Chien, S., Kambhampathi, R., Knoblock, C. (eds.) Proc. of the 5th International Conference on AI Planning Systems, pp. 216–225. AAAI (2000)Google Scholar
  6. 6.
    Schattenberg, B., Weigl, A., Biundo, S.: Hybrid planning using flexible strategies. In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 258–272. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Schattenberg, B., Biundo, S.: A unifying framework for hybrid planning and scheduling. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 361–373. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief – A preliminary report on combining state abstraction and HTN planning. In: Cesta, A., Borrajo, D. (eds.) Proc. of the 6th European Conference on Planning (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bernd Schattenberg
    • 1
  • Julien Bidot
    • 1
  • Susanne Biundo
    • 1
  1. 1.Institute for Artificial Intelligence, Ulm UniversityGermany

Personalised recommendations