On Constructing a Communicative Space in HRI

  • Claudia Muhl
  • Yukie Nagai
  • Gerhard Sagerer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)


Interaction means to share a communicative space with others. Social interactions are reciprocally-oriented activities among currently present partners. An artificial system can be such a partner for humans. In this study, we investigate the effect of disturbance in human-robot interaction. Disturbance in communication is an attention shift of a partner caused by an external factor. In human-human interaction, people would cope with the problem to continue to communicate because they presuppose that the partner might get irritated and thereby shift his/her interactive orientation. Our hypothesis is that people reproduce a social attitude of reattracting the partner’s attention by varying their communication channels even toward a robot. We conducted an experiment of hybrid interaction between a human and a robot simulation and analyzed it from a sociological and an engineering perspective. Our qualitative analysis revealed that people established a communicative space with our robot and accepted it as a proactive agent.


Human-Machine Interaction Social Robotics Disturbance in Communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pörksen, B.: Die Gewissheit der Ungewissheit. Gespräche zum Konstruktivismus. In: jedem Augenblick kann ich entscheiden, wer ich bin. Heinz von Foerster über den Beobachter, das dilaogische Leben und eine konstruktivistische Philosophie des Unterscheidens, Carl-Auer-Systeme Verlag (2001)Google Scholar
  2. 2.
    Dautenhahn, K., Ogden, B., Quick, T.: From embodied to socially embedded agents - implications for interaction-aware robots, December 2001 (2002)Google Scholar
  3. 3.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42, 143–166 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Goetz, J., Kiesler, S., Powers, A.: Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: Proceedings of the 12th IEEE International Workshop on Robot and Human Interactive Communication, pp. 55–60. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  5. 5.
    Minato, T., Shimada, M., Itakura, S., Lee, K., Ishiguro, H.: Evaluating the human likeness of an android by comparing gaze behaviors elicited by the android and a person. Advanced Robotics 20(10), 1147–1163 (2006)CrossRefGoogle Scholar
  6. 6.
    Mori, M.: Bukimi no tani (the uncanny valley). Energy 7(4), 33–35 (1970)Google Scholar
  7. 7.
    Asada, M., MacDorman, K.F., Ishiguro, H., Kuniyoshi, Y.: Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robotics and Autonomous Systems 37, 185–193 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a survey. Connection Science 15(4), 151–190 (2003)CrossRefGoogle Scholar
  9. 9.
    Luhmann, N.: Social Systems. Stanford University Press, Stanford, CA (1995)Google Scholar
  10. 10.
    Goodwin, C., Heritage, J.: Conversation analysis. Annual Reviw of Anthropology 19, 283–307 (1990)CrossRefGoogle Scholar
  11. 11.
    Schütz, A.: Collected Papers, The problem of the social reality, vol. 1, Nijhoff, The Hague (1962)Google Scholar
  12. 12.
    Goodwin, C., Goodwin, M.H.: Conurrent operations on talk: Notes on the interactive organization of assessments. In: IPRA Papers in Pragmatics, vol. 1, pp. 1–54 (1987)Google Scholar
  13. 13.
    Goodwin, C.: Discourse of the Body, pp. 19–42. Palgrave/Macmillan, New York (2003)Google Scholar
  14. 14.
    Sacks, H., Schegloff, E.A., Jefferson, G.: A simplest systematics for the organization of turn-taking for conversation. Language 50, 696–735 (1974)CrossRefGoogle Scholar
  15. 15.
    Garfinkel, H.: Studies in Ethnomethodology. Prentice-Hall, Englewood Cliffs (1967)Google Scholar
  16. 16.
    von Glasersfeld, E.: Wege des Wissens. Konstruktivistische Erkundungen durch unser Denken. In: Fiktion und Realität aus der Perspektive des radikalen Konstruktivismus, pp. 45–61. Carl-Auer-Systeme Verlag (1997)Google Scholar
  17. 17.
    von Glasersfeld, E.: Radikaler Konstruktivismus. Ideen, Ergebnisse, Probleme. Suhrkamp, Frankfurt a. M (1995)Google Scholar
  18. 18.
    Goodwin, C.: Notes on story structure and the organization of participation. Cambridge: Cambridge University Press (1984)Google Scholar
  19. 19.
    Ogino, M., Watanabe, A., Asada, M.: Mapping from facial expression to internal state based on intuitive parenting. In: Proceedings of the Sixth International Workshop on Epigenetic Robotics, pp. 182–183 (2006)Google Scholar
  20. 20.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  21. 21.
    Itti, L., Dhavale, N., Pighin, F.: Realistic avatar eye and head animation using a neurobiological model of visual attention. In: Proceedings of the SPIE 48th Annual International Symposium on Optical Science and Technology, pp. 64–78 (2003)Google Scholar
  22. 22.
    Kemp, C.C., Edsinger, A.: What can i control?: The development of visual categories for a robot’s body and the world that it influences. In: Proceedings of the 5th International Conference on Development and Learning (2006)Google Scholar
  23. 23.
    Nagai, Y., Rohlfing, K.J.: Can motionese tell infants and robots ”what to imitate”? In: Proceedings of the 4th International Symposium on Imitation in Animals and Artifacts, pp. 299–306 (2007)Google Scholar
  24. 24.
    Bergmann, J.R.: Handbuch Qualitative Sozialforschung. In: Studies of Work/Ethnomethodologie, München, Psychologie Verlags Union, pp. 269–272 (1991)Google Scholar
  25. 25.
    Kidd, C.D., Breazeal, C.: Effect of a robot on user perceptions. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 28-October 2, 2004, IEEE/RSJ (2004)Google Scholar
  26. 26.
    Moore, C., Dunham, P.J. (eds.): Joint Attention: Its Origins and Role in Development. Lawrence Erlbaum Associates, Mahwah (1995)Google Scholar
  27. 27.
    Scassellati, B.: Theory of mind for a humanoid robot. Autonomous Robots 12, 13–24 (2002)MATHCrossRefGoogle Scholar
  28. 28.
    Nagai, Y., Hosoda, K., Morita, A., Asada, M.: A constructive model for the development of joint attention. Connection Science 15(4), 211–229 (2003)CrossRefGoogle Scholar
  29. 29.
    Nagai, Y., Asada, M., Hosoda, K.: Learning for joint attention helped by functional development. Advanced Robotics 20(10), 1165–1181 (2006)CrossRefGoogle Scholar
  30. 30.
    Brand, R.J., Baldwin, D.A., Ashburn, L.A.: Evidence for ’motionese’: modifications in mothers’ infant-directed action. Developmental Science 5(1), 72–83 (2002)CrossRefGoogle Scholar
  31. 31.
    Rohlfing, K.J., Fritsch, J., Wrede, B., Jungmann, T.: How can multimodal cues from child-directed interaction reduce learning complexity in robot? Advanced Robotics 20(10), 1183–1199 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Claudia Muhl
    • 1
  • Yukie Nagai
    • 1
  • Gerhard Sagerer
    • 1
  1. 1.Applied Computer Science, Faculty of Technology, Bielefeld University, 33594 BielefeldGermany

Personalised recommendations