Early History and Perspectives of Automated Deduction

  • Wolfgang Bibel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)

Abstract

With this talk we want to pay tribute to the late Professor Gerd Veenker who deserves the historic credit of initiating the formation of the German AI community. We present a summary of his scientific contributions in the context of the early approaches to theorem proving and, against this background, we point out future perspectives of Automated Deduction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: Theorem proving via general matings. Journal of the ACM 28, 193–214 (1981)MATHCrossRefGoogle Scholar
  2. Antonsen, R., Waaler, A.: Liberalized variable splitting. J. Automated Reasoning (2007)Google Scholar
  3. Bibel, W., Eder, E.: Decomposition of tautologies into regular formulas and strong completeness of connection-graph resolution. Journal of the ACM 44(2), 320–344 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. Beth, E.W.: Semantic entailment and formal derivability. Mededlingen der Koninklijke Nederlandse Akademie van Wetenschappen 18(13), 309–342 (1955)MathSciNetGoogle Scholar
  5. Beth, E.W.: On machines which prove theorems. Simon Stevin Wis- en Naturkundig Tijdschrift 32, 49–60, Reprinted in [SW83, 76–90] (1958)Google Scholar
  6. Bibel, W.: Matings in matrices. Comm. ACM 26, 844–852 (1983)MATHCrossRefMathSciNetGoogle Scholar
  7. Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg Verlag, Braunschweig (1987)MATHGoogle Scholar
  8. Bibel, W.: Lehren vom Leben – Essays über Mensch und Gesellschaft. In: Sozialwissenschaft, Deutscher Universitäts-Verlag, Wiesbaden (2003)Google Scholar
  9. Bibel, W.: Transition logic revisited, 2004 (submitted)Google Scholar
  10. Bibel, W.: Research perspectives for logic and deduction. In: Stock, O., Schaerf, M. (eds.) Reasoning, Action and Interaction in AI Theories and Systems. LNCS (LNAI), vol. 4155, pp. 25–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. Bibel, W.: Wissenssysteme und Komplexitätsbewältigung. In: Leiber, T. (ed.) Denken und Handeln in einer komplexen Welt – Festschrift zum 60. Geburtstag von Professor Klaus Mainzer, Hirzel Verlag, Stuttgart (2007)Google Scholar
  12. Blake, A.: Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, Illinois (1937)Google Scholar
  13. Brüning, W.: Grundlagen der Strengen Logik. Königshausen und Neumann, Würzburg (1996)Google Scholar
  14. Cordeschi, R.: The role of heuristics in automated theorem proving – J.A. Robinson’s resolution principle. Mathware & Soft Computing 3, 281–293 (1996)Google Scholar
  15. Davis, M.: A computer program for Presburger’s algorithm. In: Summaries of talks presented at the Summer Institute for Symbolic Logic, Princeton NJ, pp. 215–233, Institute for Defense Analysis (1957), Also contained in [SW83, 41–48]Google Scholar
  16. Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proc. Symposium for Applied Mathematics XV, Providence, RI, pp. 15–30 (1963), Also contained in [SW83, 315–330]Google Scholar
  17. Davis, M.: The Prehistory and Early History of Automated Deduction. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 1 – Classical Papers on Computational Logic 1957–1966, pp. 1–28. Springer, Berlin (1983)Google Scholar
  18. Dunham, B., Fridshal, R., Sward, G.L.: A non-heuristic program for proving elementary logical theorems. In: First International Conference on Information Processing, Paris, pp. 282–285. Unesco House (1960), Also contained in [SW83, 93–98]Google Scholar
  19. Dunham, B., North, J.H.: Theorem testing by computer. In: Proc. Sympos, Brooklyn NY, pp. 173–177. Polytechnic Press (1963) Also contained in [SW83, 271–275]Google Scholar
  20. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of ACM 7, 201–215 (1960), Also contained in [SW83, 125–139]Google Scholar
  21. Eisinger, N.: Completeness, Confluence, and Related Properties of Clause Graph Resolution. Pitman, London (1991)Google Scholar
  22. Feferman, S.: Alfred tarski and a watershed meeting in logic: Cornell, 1957. In: Hintikka, J., et al. (eds.) Philosophy and Logic – In search of the Polish tradition. Synthese Library, vol. 323, pp. 151–162. Kluwer Acad. Publ., Dordrecht (2003), http://math.stanford.edu/~feferman/papers/cornell.pdf Google Scholar
  23. Frege, G.: Begriffsschrift. Louis Nebert, Halle (1879)Google Scholar
  24. Gelernter, H.: Realization of a geometry theorem-proving machine. In: Proc. First Intern. Conf. on Information Processing (IFIP), Paris, pp. 273–282. UNESCO House (1959), Also contained in [SW83, 99–122]Google Scholar
  25. Gilmore, P.C.: A proof method for quantification theory: Its justification and realization. IBM J. Research Develop. 4, 28–35 (1960)MATHMathSciNetCrossRefGoogle Scholar
  26. Gilmore, P.C.: An examination of the geometry theory machine. Artificial Intelligence 1, 171–187 (1970)MATHCrossRefGoogle Scholar
  27. Goldfarb, W.D. (ed.): J. J. Herbrand — Logical writings. Reidel, Dordrecht (1971)Google Scholar
  28. Hilbert, D., Ackermann, W.: Grundzüge der Theoretischen Logik. Springer, Heidelberg (1928)MATHGoogle Scholar
  29. Herbrand, J.J.: Recherches sur la théorie de la démonstration. In: Travaux Soc. Sciences et Lettres Varsovie, Cl. 3 (Mathem., Phys.) (1930), Engl. transl. in [Gol71]Google Scholar
  30. Hintikka, K.J.J.: Form and content in quantification theory. Acta Philosophica Fennica 8, 7–55 (1955)MathSciNetGoogle Scholar
  31. Hoffmann, G.-R., Veenker, G.: The unit-clause proof procedure with equality. Computing 7(1-2), 91–105 (1971)MATHCrossRefMathSciNetGoogle Scholar
  32. Kanger, S.: Provability in Logic. PhD thesis, University of Stockholm (1957)Google Scholar
  33. Kneale, W., Kneale, M.: The Development of Logic. Clarendon Press, Oxford (1984)Google Scholar
  34. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO — A high-performance theorem prover for first-order logic. Journal of Automated Reasoning 8(2), 183–212 (1992)MATHCrossRefMathSciNetGoogle Scholar
  35. McCarthy, J.: The Wang algorithm for the propositional calculus programmed in LISP. In: McCarthy, J. (ed.) Symbol Manipulating Language Memo 14, Artificial Intelligence Project, MIT, Cambridge MA (1959), Quoted in [Wan60a, p.232]Google Scholar
  36. McCharen, J., Overbeek, R., Wos, L.: Problems and experiments for and with automated theorem proving programs. IEEE Transactions on Computers C-25, 773–782 (1976)CrossRefGoogle Scholar
  37. Newell, A., Shaw, J.C., Simon, H.A.: The logic theory machine. IRE Trans. Information Theory IT-2, 61–79 (1956), Also contained in [SW83, 49-73]Google Scholar
  38. Papon, P.: Die Wissenschaft, Zeichen der Zeit. FTE Info – Magazin über europäische Forschung (An interview) 50, 9–11 (2006)Google Scholar
  39. Prawitz, D., Prawitz, H., Voghera, N.: A mechanical proof procedure and its realization in an electronic computer. J. ACM 7, 102–128 (1960)MATHCrossRefMathSciNetGoogle Scholar
  40. Prawitz, D.: An improved proof procedure. Theoria 26, 102–139 (1960), Also contained in [SW83, 159–199]Google Scholar
  41. Robinson, A.: Proving theorems (as done by man, logician, or machine). In: Summaries of Talks Presented at the Summer Institute for Symbolic Logic, Communic. Res. Div., Princeton, New Jersey, Institute for Defense Analysis (1957), Also contained in [SW83, 74–76]Google Scholar
  42. Alan Robinson, J.: Gamma I: A general theorem proving program for the IBM 704. Technical Report ANL-6447, Argonne National Laboratory, Chicago, IL (1961)Google Scholar
  43. Alan Robinson, J.: Theorem proving on the computer. Journ. ACM 10(2), 163–174 (1963), Also contained in [SW83, 372–383]Google Scholar
  44. Alan Robinson, J.: A machine-oriented logic based on the resolution principle. Journal of ACM 12, 23–41 (1965), Also contained in [SW83, 397–415]Google Scholar
  45. Robinson, J.A.: PROOF=GUARANTEE+EXPLANATION. In: Hölldobler, S. (ed.) Intellectics and Computational Logic – Papers in Honor of Wolfgang Bibel. Applied Logic Series, vol. 19, pp. 277–294. Kluwer, Dordrecht (2000)Google Scholar
  46. Schütte, K.: Ein System des verknüpfenden Schließens. Archiv f. Mathematische Logik und Grundlagen der Wissenschaften 2, 55–67 (1956)MATHCrossRefGoogle Scholar
  47. Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning — Classical Papers on Computational Logic 1957-1966, vol. 1. Springer, Berlin (1983)Google Scholar
  48. Veenker, G.: Ein Entscheidungsverfahren für den Aussagenkalkül und seine Realisation in einem Rechenautomaten. Grundl.stud. aus Kybernetik u. Geisteswiss 4, 127–136 (1963)Google Scholar
  49. Veenker, G.: Beweisalgorithmen für die Prädikatenlogik. Computing 2(3), 263–283 (1967)MATHCrossRefMathSciNetGoogle Scholar
  50. van Orman Quine, W.: A proof procedure for quantification theory. J. Symbolic Logic 20, 141–149 (1955)CrossRefGoogle Scholar
  51. van Orman Quine, W.: A way to simplify truth functions. American Mathematical Monthly 62, 627–631 (1955)CrossRefMathSciNetGoogle Scholar
  52. Wang, H.: Proving theorems by pattern recognition, Part I. Comm. ACM 3, 220–234 (1960), Also contained in [SW83, 229–243]Google Scholar
  53. Wang, H.: Toward mechanical mathematics. IBM Journ. Res. Develop. 4, 2–22, Also contained in [SW83, 244–264] (1960)Google Scholar
  54. Wos, L., Carson, D., Robinson, G.A.: The unit preference strategy in theorem proving. In: AFIPS Conf. Proc., Washington DC, vol. 26, pp. 615–621. Spartan Books (1964)Google Scholar
  55. Wos, L., Henschen, L.: Automated theorem proving 1965–1970. In: Siekmann, J., Wrightson, G. (eds.) Automated Reasoning 2 – Classical Papers on Computational Logic 1967–1970, vol. 2, pp. 1–24. Springer, Berlin (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Wolfgang Bibel
    • 1
  1. 1.Darmstadt University of Technology, Also affiliated with the University of British Columbia 

Personalised recommendations