Relational Neural Gas

  • Barbara Hammer
  • Alexander Hasenfuss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)


We introduce relational variants of neural gas, a very efficient and powerful neural clustering algorithm, which allow a clustering and mining of data given in terms of a pairwise similarity or dissimilarity matrix. It is assumed that this matrix stems from Euclidean distance or dot product, respectively, however, the underlying embedding of points is unknown. One can equivalently formulate batch optimization in terms of the given similarities or dissimilarities, thus providing a way to transfer batch optimization to relational data. For this procedure, convergence is guaranteed and extensions such as the integration of label information can readily be transferred to this framework.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.W. (ed.): Hyperbolic Geometry, 2nd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  2. 2.
    Conan-Guez, B., Rossi, F., El Golli, A.: A fast algorithm for the self-organizing map on dissimilarity data. In: Workshop on Self-Organizing Maps, pp. 561–568 (2005)Google Scholar
  3. 3.
    Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) NIPS, vol. 11, pp. 438–444. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11, 139–155 (1999)CrossRefGoogle Scholar
  6. 6.
    Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median neural gas. In: Dagli, C., Buczak, A., Enke, D., Embrechts, A., Ersoy, O. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks. Smart Engineering System Design, vol. 16, pp. 623–633. ASME Press (2006)Google Scholar
  7. 7.
    Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised batch neural gas. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 33–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Hasenfuss, A., Hammer, B., Schleif, F.-M., Villmann, T.: Neural gas clustering for dissimilarity data with continuous prototypes. In: WANN 2007 (accepted, 2007)Google Scholar
  9. 9.
    Hammer, B., Hasenfuss, A., Villmann, T.: Magnification control for batch neural gas. Neurocomputing 70, 1225–1234 (2007)CrossRefGoogle Scholar
  10. 10.
    Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing network models. Neural Networks 17(8-9), 1061–1086 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Hathaway, R.J., Bezdek, J.C.: Nerf c-means: Non-euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429–437 (1994)CrossRefGoogle Scholar
  13. 13.
    Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means algorithms. Pattern Recognition 22, 205–212 (1989)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 12, 1299–1305 (2001)CrossRefGoogle Scholar
  15. 15.
    Juan, A., Vidal, E.: On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification. In: ICPR 2000, vol. 2, pp. 680–683 (2000)Google Scholar
  16. 16.
    Kaski, S., Nikkilä, J., Savia, E., Roos, C.: Discriminative clustering of yeast stress response. In: Seiffert, U., Jain, L., Schweizer, P. (eds.) Bioinformatics using Computational Intelligence Paradigms, pp. 75–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., Castren, E.: Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinformatics 4, 48 (2003)CrossRefGoogle Scholar
  18. 18.
    Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)CrossRefGoogle Scholar
  20. 20.
    Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945–952 (2002)CrossRefGoogle Scholar
  21. 21.
    Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Martinetz, T., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4, 558–569 (1993)CrossRefGoogle Scholar
  23. 23.
    Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7, 507–522 (1994)CrossRefGoogle Scholar
  24. 24.
    Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment. Protein Engineering 9, 127–132 (1996)CrossRefGoogle Scholar
  25. 25.
    Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)MATHCrossRefGoogle Scholar
  26. 26.
    Neural Networks Research Centre, Helsinki University of Technology, SOM Toolbox,
  27. 27.
    Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms with application to cluster analysis. ICPR 2004 4, 617–620 (2004)Google Scholar
  28. 28.
    Schleif, F.-M., Hammer, B., Villmann, T.: Margin based Active Learning for LVQ Networks. Neurocomputing 70(7-9), 1215–1224 (2007)CrossRefGoogle Scholar
  29. 29.
    Schölkopf, B.: The kernel trick for distances, Microsoft TR 2000-51 (2000)Google Scholar
  30. 30.
    Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix data. Neural Networks 17, 1211–1230 (2004)MATHCrossRefGoogle Scholar
  31. 31.
    Tino, P., Kaban, A., Sun, Y.: A generative probabilistic approach to visualizing sets of symbolic sequences. In: Kohavi, R., Gehrke, J., DuMouchel, W., Ghosh, J. (eds.) KDD-2004. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–706. ACM Press, New York (2004)CrossRefGoogle Scholar
  32. 32.
    Villmann, T., Hammer, B., Schleif, F., Geweniger, T., Herrmann, W.: Fuzzy classification by fuzzy labeled neural gas. Neural Networks 19, 772–779 (2006)MATHCrossRefGoogle Scholar
  33. 33.
    Wolberg, W.H., Street, W.N., Heisey, D.M., Mangasarian, O.L.: Computer-derived nuclear features distinguish malignant from benign breast cytology. Human Pathology 26, 792–796 (1995)CrossRefGoogle Scholar
  34. 34.
    Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density network. Neural Networks 19(6), 780–784 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Barbara Hammer
    • 1
  • Alexander Hasenfuss
    • 1
  1. 1.Clausthal University of Technology, Institute of Computer Science, Clausthal-ZellerfeldGermany

Personalised recommendations