A SPARQL Semantics Based on Datalog

  • Simon Schenk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4667)

Abstract

SPARQL is the upcoming W3C standard query language for RDF data in the semantic web. In this paper we propose a formal semantics for SPARQL based on datalog. A mapping of SPARQL to datalog allows to easily reuse existing results from logics for analysis and extensions of SPARQL. Using this semantics we analyse the complexity of query answering in SPAQRL and propose two useful extensions to SPARQL, namely binding of variables to results of filter expressions and views on RDF graphs as datasets for queries. We show that these extensions to not add to the overall complexity of SPARQL.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: Owl web ontology language reference (2004), http://www.w3.org/TR/owl-ref/
  2. 2.
    Berners-Lee, T.: Notation 3 (2006), http://www.w3.org/DesignIssues/Notation3
  3. 3.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: WWW 2005, pp. 613–622. ACM Press, New York (2005)CrossRefGoogle Scholar
  4. 4.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing. Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  5. 5.
    de Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of normative RDF. In: OWL: Experiences and Directions Workshop, Galway, Ireland, November 2005. CEUR Workshop Proceedings (2005), http://www.debruijn.net/publications/owl-05.pdf
  6. 6.
    Decker, S.: Semantic Web Methods for Knowledge Management. Phd thesis, University of Karlsruhe (February 2002)Google Scholar
  7. 7.
    Lloyd, J.W., Topor, R.W.: Making Prolog more expressive. Journal of Logic Programming 1(3), 225–240 (1984)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis, Universität Karlsruhe (TH) (2006)Google Scholar
  9. 9.
  10. 10.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Polleres, A.: From SPARQL to rules (and back). Technical report (December 2006), http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf
  12. 12.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2007), http://www.w3.org/TR/rdf-sparql-query/
  13. 13.
    Schenk, S., Staab, S.: Networked RDF Graphs. Technical report (December 2006) http://uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf
  14. 14.
    van Gelder, A., Ross, K., Schlipf, J.S.: The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38(3), 620–650 (1991)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Simon Schenk
    • 1
  1. 1.Institute for Computer Science, University of Koblenz 

Personalised recommendations