Face Authentication with Salient Local Features and Static Bayesian Network

  • Guillaume Heusch
  • Sébastien Marcel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

In this paper, the problem of face authentication using salient facial features together with statistical generative models is adressed. Actually, classical generative models, and Gaussian Mixture Models in particular make strong assumptions on the way observations derived from face images are generated. Indeed, systems proposed so far consider that local observations are independent, which is obviously not the case in a face. Hence, we propose a new generative model based on Bayesian Networks using only salient facial features. We compare it to Gaussian Mixture Models using the same set of observations. Conducted experiments on the BANCA database show that our model is suitable for the face authentication task, since it outperforms not only Gaussian Mixture Models, but also classical appearance-based methods, such as Eigenfaces and Fisherfaces.

Keywords

Bayesian Network Face Recognition Face Image Gaussian Mixture Model Equal Error Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition With Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 469–481. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bailly-Baillière, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariéthoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Ruiz, B., Thiran, J.-P.: The Banca Database and Evaluation Protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Bartlett, M., Movellan, J., Sejnowski, T.: Face Recognition by Independent Component Analysis. IEEE Trans. on Neural Networks 13(6), 1450–1464 (2002)CrossRefGoogle Scholar
  4. 4.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  5. 5.
    Cardinaux, F., Sanderson, C., Bengio, S.: User Authentication via Adapted Statistical Models of Face Images. IEEE Trans. on Signal Processing 54(1), 361–373 (2005)CrossRefGoogle Scholar
  6. 6.
    Cardinaux, F., Sanderson, C., Marcel, S.: Comparison of MLP and GMM classifiers for face verification on XM2VTS. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Active Shape Models: Their Training and Applications. Computer Vision & Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  8. 8.
    Cowell, G., Dawid, P., Lauritzen, L., Spiegelhalter, J.: Probabilistic Networks and Expert Systems. Springer, Heidelberg (1999)MATHGoogle Scholar
  9. 9.
    Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood From Incomplete Data via the EM Algorithm. The Journal of Royal Statistical Society 39, 1–37 (1977)MATHMathSciNetGoogle Scholar
  10. 10.
    Gauvain, J.-L., Lee, C.-H.: Maximum A Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains. IEEE Transactions on Speech and Audio Processing 2(2), 291–298 (1994)CrossRefGoogle Scholar
  11. 11.
    Heckerman, D.: Tutorial on Learning With Bayesian Networks. In: Learning in Graphical Models, vol. A, pp. 301–354. MIT Press, Cambridge (1999)Google Scholar
  12. 12.
    Heisele, B., Ho, P., Wu, J., Poggio, T.: Face Recognition: Component-based versus Global Approaches. Computer Vision and Image Understanding 91(1), 6–21 (2003)CrossRefGoogle Scholar
  13. 13.
    Lucey, S., Chen, T.: A GMM Parts Based Face Representation for Improved Verification through Relevance Adaptation. In: CVPR. IEEE Intl. Conf. on Computer Vision and Pattern Recognition, pp. 855–861. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  14. 14.
    Nefian, A.: Embedded Bayesian Networks for Face Recognition. In: ICME. IEEE Intl. Conference on Multimedia and Expo., IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  15. 15.
    Nefian, A., Hayes, M.: Hidden Markov Models for Face Recognition. In: ICASSP. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2721–2724. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  16. 16.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  17. 17.
    Rodriguez, Y., Marcel, S.: Face Authentication Using Adapted Local Binary Pattern Histograms. In: ECCV. European Conference on Computer Vision, pp. 321–332 (2006)Google Scholar
  18. 18.
    Samaria, F., Young, S.: HMM-based Architecture for Face Identification. Image and Vision Computing 12(8), 537–543 (1994)CrossRefGoogle Scholar
  19. 19.
    Turk, M., Pentland, A.: Face Recognition Using Eigenfaces. In: CVPR. IEEE Intl. Conf. on Computer Vision and Pattern Recognition, pp. 586–591. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  20. 20.
    Wiskott, L., Fellous, J.-M., Krüger, N., Von Der Malsburg, C.: Face Recognition By Elastic Bunch Graph Matching. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 456–463. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Guillaume Heusch
    • 1
    • 2
  • Sébastien Marcel
    • 1
  1. 1.IDIAP Research Institute, rue du Simplon 4, 1920 MartignySwitzerland
  2. 2.Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 LausanneSwitzerland

Personalised recommendations