Fingerprint Matching with Minutiae Quality Score

  • Jiansheng Chen
  • Fai Chan
  • Yiu-Sang Moon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

The accuracy of minutiae based fingerprint matching relies much on the minutiae extraction process. However, during minutiae extraction, false minutiae may be extracted due to bad fingerprint image quality. One commonly used solution to this problem is to filter out the false minutiae using minutiae quality scores. However, as indicated by the fingerprint matching results, the reliabilities of the existing minutiae scoring algorithms in discriminating genuine and false minutiae are significantly lower than that of the fingerprint matching process. To study the actual difficulties in minutiae filtering, we have conducted extensive experiments to compare two minutiae quality scoring algorithms. Then, four fingerprint matching strategies using minutiae quality scores were employed to investigate how the minutiae quality scores can affect fingerprint matching accuracy. Our results show that only proper combinations of minutiae quality scoring algorithms and fingerprint matching strategies can achieve improvement in fingerprint matching accuracy.

Keywords

Fingerprint verification Fingerprint minutiae quality 

References

  1. 1.
    Kim, D.H.: Minutiae Quality Scoring and Filtering Using a Neighboring Ridge Structural Analysis on a Thinned Fingerprint Image. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, p. 674. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Krishnan, N., Fred, A.L., Padmapriya, S.: A Novel Technique for Fingerprint Feature Extraction Using Fixed Size Templates. In: IEEE INDICON Conf., India, pp. 371–374 (2005)Google Scholar
  3. 3.
    Bhanu, B., Tan, X.: Learned templates for feature extraction in fingerprint images. In: Proc. of CVPR, vol. 2, pp. 591–596 (2001)Google Scholar
  4. 4.
    Jiang, X., Yau, W.Y.: Fingerprint minutiae matching based on the local and global structures. In: Proc. of 15th ICPR, vol. 2, pp. 1038–1041 (2000)Google Scholar
  5. 5.
    Maio, D., Maltoni, D.: Direct gray-scale minutiae detection in fingerprints. IEEE Trans. on PAMI 19(1), 27–40 (1997)Google Scholar
  6. 6.
    Lin, H., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. on PAMI 20(8), 777 (1998)Google Scholar
  7. 7.
    Chen, J.S., Moon, Y.S., Fong, K.F.: Efficient Fingerprint Image Enhancement for Mobile Embedded Systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Chan, K.C., Moon, Y.S., Cheng, P.S.: Fast Fingerprint Verification using Sub-regions of Fingerprint Images. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 95–101 (2004)CrossRefGoogle Scholar
  9. 9.
    Jain, A., Ross, A., Prabhakar, S.: Fingerprint matching using minutiae and texture features. In: Proc. IEEE Int’l Conf. on Image Processing (ICIP), Greece, pp. 282–285 (October 2001)Google Scholar
  10. 10.
    Bebis, G., Deaconu, T., Georgiopoulos, M.: Fingerprint Identification Using Delaunay Triangulation. In: International Conf. on Information Intelligence and Systems, p. 452 (1999)Google Scholar
  11. 11.
    Ross, A., Dass, S., Jain, A.: A deformable model for fingerprint matching. Pattern Recognition 38(1), 95–103 (2005)CrossRefGoogle Scholar
  12. 12.
    Luo, X.P., Tian, J., Wu, Y.: A Minutiae Matching Algorithm in Fingerprint Verification. Proc. of 15th ICPR 4, 4833 (2000)Google Scholar
  13. 13.
    Kovács-Vajna, Z.M.: A Fingerprint Verification System Based on Triangular Matching and Dynamic Time Warping. IEEE Trans. on PAMI 22(11), 1266–1276 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jiansheng Chen
    • 1
  • Fai Chan
    • 1
  • Yiu-Sang Moon
    • 1
  1. 1.Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T.Hong Kong

Personalised recommendations