Evaluating the Biometric Sample Quality of Handwritten Signatures

  • Sascha Müller
  • Olaf Henniger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

This paper addresses the problem of evaluating the quality of handwritten signatures used for biometric authentication. It is shown that some signature samples yield significantly worse performance than other samples from the same person. Thus, the importance of good reference samples is emphasized. We also give some examples of features that are related to the signature stability and show that these have no influence on the actual utility of the sample in a comparison environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Information technology – Biometric application programming interface – Part 1: BioAPI specification. International Standard ISO/IEC 19784-1 (2006)Google Scholar
  2. 2.
    Information technology – Common biometric exchange formats framework – Part 1: Data element specification. International Standard ISO/IEC 19785-1 (2006)Google Scholar
  3. 3.
    Information technology – Biometric data interchange formats. Multi-Part International Standard ISO/IEC 19794Google Scholar
  4. 4.
    Tabassi, E., Wilson, C.R., Watson, C.I.: Fingerprint image quality. NIST Interagency Report NISTIR 7151, NIST, Gaithersburg, MD, USA (2004)Google Scholar
  5. 5.
    Information technology – Biometric sample quality – Part 1: Framework. Working Draft ISO/IEC WD 29794-1 (2007)Google Scholar
  6. 6.
    Biometric sample quality standard. INCITS Draft M1/05-0306 (Revision 4) (2005)Google Scholar
  7. 7.
    Kholmatov, A., Yanikoglu, B.A.: Identity authentication using improved online signature verification method. Pattern Recognition Letters 26(15), 2400–2408 (2005)CrossRefGoogle Scholar
  8. 8.
    Yeung, D.-Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004: First international signature verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on acoustics, speech and signal processing 26(1), 1–2 (1978)CrossRefGoogle Scholar
  10. 10.
    Ortega-Garcia, J., Fiérrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.-J., Vivaracho, C., Escudero, D., Moro, Q.-I.: MCYT baseline corpus: a bimodal biometric database. IEE Proceedings Visual Image Processing 150(6), 395–401 (2003)CrossRefGoogle Scholar
  11. 11.
    Fiérrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., Ortega-Garcia, J., Maltoni, D.: An on-line signature verification system based on fusion of local and global information. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 523–532. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Elliot, S.J.: A Comparison of On-Line Dynamic Signature Trait Variables Across Different Computing Devices. PhD thesis, Purdue University (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sascha Müller
    • 1
  • Olaf Henniger
    • 2
  1. 1.Technische Universität Darmstadt, DarmstadtGermany
  2. 2.Fraunhofer Institute for Secure Information Technology, DarmstadtGermany

Personalised recommendations