Advertisement

Walker Recognition Without Gait Cycle Estimation

  • Daoliang Tan
  • Shiqi Yu
  • Kaiqi Huang
  • Tieniu Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

Most of gait recognition algorithms involve walking cycle estimation to accomplish signature matching. However, we may be plagued by two cycle-related issues when developing real-time gait-based walker recognition systems. One is accurate cycle evaluation, which is computation intensive, and the other is the inconvenient acquisition of long continuous sequences of gait patterns, which are essential to the estimation of gait cycles. These drive us to address the problem of distant walker recognition from another view toward gait, in the hope of detouring the step of gait cycle estimation. This paper proposes a new gait representation, called normalized dual-diagonal projections (NDDP), to characterize walker signatures and employs a normal distribution to approximately describe the variation of each subject’s gait signatures in the statistical sense. We achieve the recognition of unknown gait features in a simplified Bayes framework after reducing the dimension of raw gait signatures based on linear subspace projections. Extensive experiments demonstrate that our method is effective and promising.

Keywords

Gait recognition cycle estimation PCA LDA 

References

  1. 1.
    Collins, R., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Proc. Automatic Face and Gesture Recognition, pp. 366–371 (2002)Google Scholar
  2. 2.
    Cowey, A., Vaina, L.M.: Blindness to form from motion despite intact static form perception and motion detection. Neuropsychologia 38(5), 566–578 (2000)CrossRefGoogle Scholar
  3. 3.
    Cunado, D., Nixon, M., Carter, J.: Automatic extraction and description of human gait model for recognition purposes. CVIU 90(1), 1–41 (2003)Google Scholar
  4. 4.
    Downing, P.E., Jiang, Y., Shuman, M., Kanwisher, N.: A cortical area selective for visual processing of the human body. Science 293(5539), 2470–2473 (2001)CrossRefGoogle Scholar
  5. 5.
    Han, J., Bhanu, B.: Statistical feature fusion for gait-based human recognition. Proc. CVPR (2004)Google Scholar
  6. 6.
    Jacobs, A., Pinto, J.: Experience, context and the visual perception of human movement. Journal of Experimental Psychology: Human Perception and Performance 30(5), 822–835 (2004)CrossRefGoogle Scholar
  7. 7.
    Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N., RoyChowdhury, A., Krueger, V.: Identification of humans using gait. IEEE Trans. Image Processing 13(9), 1163–1173 (2004)CrossRefGoogle Scholar
  8. 8.
    Liu, Z., Sarkar, S.: Simplest representation yet for gait recognition: Averaged silhouette. Proc. ICPR (2004)Google Scholar
  9. 9.
    Reed, C.L., Stone, V.E., Bozova, S., Tanaka, J.: The body-inversion effect. Psychological Science 14(4), 302–308 (2003)CrossRefGoogle Scholar
  10. 10.
    Sarkar, S., Philips, P., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The human gait challenge problem: data sets, performance and analysis. PAMI 27(2), 162–177 (2005)Google Scholar
  11. 11.
    Tan, D., Huang, K., Yu, S., Tan, T.: Efficient night gait recognition based on template matching. In: Proc. ICPR, pp. 1000–1003 (2006)Google Scholar
  12. 12.
    Urtasun, R., Fua, P.: 3d tracking for gait characterization and recognition. In: Proc. Automatic Face and Gesture Recognition, pp. 17–22 (2004)Google Scholar
  13. 13.
    Veeraraghavan, A., Roy-Chowdhury, A., Chellappa, R.: Matching shape sequences in video with applications in human movement analysis. PAMI 27(12), 1896–1909 (2005)Google Scholar
  14. 14.
    Veres, G., Gordon, L., Carter, J., Nixon, M.: What image information is important in silhouette-based gait recognition? In: Proc. CVPR (2004)Google Scholar
  15. 15.
    Wang, L., Tan, T., Hu, W., Ning, H.: Silhouette analysis-based gait recognition for human identification. PAMI 25(12), 1505–1518 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Daoliang Tan
    • 1
  • Shiqi Yu
    • 1
  • Kaiqi Huang
    • 1
  • Tieniu Tan
    • 1
  1. 1.Center for Biometrics and Security Research, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080P.R. China

Personalised recommendations