Keypoint Identification and Feature-Based 3D Face Recognition

  • Ajmal Mian
  • Mohammed Bennamoun
  • Robyn Owens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

We present a feature-based 3D face recognition algorithm and propose a keypoint identification technique which is repeatable and identifies keypoints where shape variation is high in 3D faces. Moreover, a unique 3D coordinate basis can be defined locally at each keypoint facilitating the extraction of highly descriptive pose invariant features. A feature is extracted by fitting a surface to the neighbourhood of a keypoint and sampling it on a uniform grid. Features from a probe and gallery face are projected to the PCA subspace and matched. Two graphs are constructed from the set of matching features of the probe and gallery face. The similarity between these graphs is used to determine the identity of the probe. The proposed algorithm was tested on the FRGC v2 data and achieved 93.5% identification and 97.4% verifiction rates.

Keywords

Face Recognition Range Image Neutral Expression Face Recognition Grand Challenge Gallery Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Besl, P.J., McKay, N.D.: Reconstruction of Real-world Objects via Simultaneous Registration and Robust Combination of Multiple Range Images. IEEE TPAMI 14(2), 239–256 (1992)Google Scholar
  2. 2.
    Bowyer, K.W., Chang, K., Flynn, P.: A Survey Of Approaches and Challenges in 3D and Multi-modal 3D + 2D Face Recognition. CVIU 101, 1–15 (2006)Google Scholar
  3. 3.
    D’Erico, J.: Surface Fitting using Gridfit. MATLAB Central File Exchange (2006)Google Scholar
  4. 4.
    Huang, J., Heisele, B., Blanz, V.: Component-based Face Recognition with 3D Morphable Models. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Huskën, M., Brauckmann, M., Gehlen, S., Malsburg, C.: Strategies and Benefits of Fusion of 2D and 3D Face Recognition. In: IEEE Workshop on FRGC Exp. (2005)Google Scholar
  6. 6.
    Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE TCSVT 14(1), 4–20 (2004)Google Scholar
  7. 7.
    Jones, M., Viola, P.: Face Recognition using Boosted Local Features. IEEE ICCV (2003)Google Scholar
  8. 8.
    Lu, X., Jain, A.K., Colbry, D.: Matching 2.5D Scans to 3D Models. IEEE TPAMI 28(1), 31–43 (2006)Google Scholar
  9. 9.
    Maurer, T., Guigonis, D., Maslov, I., Pesenti, B., Tsaregorodtsev, A., West, D., Medioni, G.: Performance of Geometrix ActiveIDTM 3D Face Recognition Engine on the FRGC Data. In: IEEE Workshop on FRGC Exp. (2005)Google Scholar
  10. 10.
    Mian, A.S., Bennamoun, M., Owens, R.A.: A Novel Representation and Feature Matching Algorithm for Automatic Pairwise Registration of Range Images. IJCV 66, 19–40 (2006)CrossRefGoogle Scholar
  11. 11.
    Mian, A.S., Bennamoun, M., Owens, R.A.: 2D and 3D Multimodal Hybrid Face Recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 344–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic 3D Face Detection, Normalization and Recognition. 3DPVT (2006)Google Scholar
  13. 13.
    Mian, A.S., Bennamoun, M., Owens, R.A.: Face Recognition Using 2D and 3D Multimodal Local Features. ISVC, 860–870 (2006)Google Scholar
  14. 14.
    Mian, A.S., Bennamoun, M., Owens, R.A.: An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition. IEEE TPAMI 2007 (to appear)Google Scholar
  15. 15.
    Passalis, G., Kakadiaris, I., Theoharis, T., Tederici, G., Murtaza, N.: Evaluation of 3D Face Recognition in the Presence of Facial Expressions: An Annotated Deformable Model Approach. In: IEEE Workshop on FRGC Experiments, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  16. 16.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. IEEE CVPR (2005)Google Scholar
  17. 17.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. JOCN 3 (1991)Google Scholar
  18. 18.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey. ACM Computing Survey, pp. 399–458 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ajmal Mian
    • 1
  • Mohammed Bennamoun
    • 1
  • Robyn Owens
    • 1
  1. 1.School of Computer Science and Software Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009Australia

Personalised recommendations