Template Co-update in Multimodal Biometric Systems

  • Fabio Roli
  • Luca Didaci
  • Gian Luca Marcialis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

Performances of biometric recognition systems can degrade quickly when the input biometric traits exhibit substantial variations compared to the templates collected during the enrolment stage of users. This issue can be addressed using template update methods. In this paper, a novel template update method based on the concept of biometric co-training is presented. In multimodal biometric systems, this method allows co-updating the template galleries of different biometrics, realizing a co-training process of biometric experts which allows updating templates more quickly and effectively. Reported results provide a first experimental evidence of the effectiveness of the proposed template update method.

References

  1. 1.
    Uludag, U., Ross, A., Jain, A.K.: Biometric template selection and update: a case study in fingerprints. Pattern Recognition 37(7), 1533–1542 (2004)CrossRefGoogle Scholar
  2. 2.
    Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: a survey. Pattern Recognition 39(9), 1725–1745 (2006)MATHCrossRefGoogle Scholar
  3. 3.
    Roli, F., Marcialis, G.L.: Semi-supervised PCA-based face recognition using self-training. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 4109, pp. 560–568. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Jiang, X., Ser, W.: Online Fingerprint Template Improvement. IEEE Trans. PAMI 24(8), 1121–1126 (2002)Google Scholar
  5. 5.
    Ryu, C., Hakil, K., Jain, A.K.: Template adaptation based fingerprint verification. In: ICPR. Proc. of International Conference on Pattern Recognition, Hong Kong, August, vol. 4, pp. 582–585 (2006)Google Scholar
  6. 6.
    Liu, X., Chen, T., Thornton, S.M.: Eigenspace updating for non-stationary process and its application to face recognition. Pattern Recognition, 1945–1959 (2003)Google Scholar
  7. 7.
    Roli, F., Didaci, L., Marcialis, G.L.: Adaptive biometric systems that can improve with use, Advances in Biometrics. In: Ratha, N., Govindaraju, V. (eds.) Sensors, Systems and Algorithms (in press, 2007)Google Scholar
  8. 8.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. of the Workshop on Computational Learning Theory, pp. 92–100 (1998)Google Scholar
  9. 9.
    Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Turk, M., Pentland, A.: Eigenfaces for Face Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  11. 11.
    Jain, A.K., Hong, L., Bolle, R.: On-line Fingerprint Verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 302–314 (1997)CrossRefGoogle Scholar
  12. 12.
    Martinez, A., Benavente, R.: The AR Face Database. CVC Technical Report #24 (June 1998)Google Scholar
  13. 13.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2002: Second Fingerprint Verification Competition. In: ICPR 2002. Proceedings 16th International Conference on Pattern Recognition, Québec City, vol. 3, pp. 811–814 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fabio Roli
    • 1
  • Luca Didaci
    • 2
  • Gian Luca Marcialis
    • 1
  1. 1.University of Cagliari – Department of Electrical and Electronic Engineering, Piazza d’Armi – 09123 CagliariItaly)
  2. 2.University of Cagliari – Department of Pedagogical and Philosophical Sciences, Via Is Mirrionis, 1 - 09123 CagliariItaly)

Personalised recommendations